Transactions on Visualization and Computer Graphics

Slicing-Tracking-Detection: Simultaneous Multi-Cylinder
Detection from Large-scale and Complex Point Clouds

Journal:

Transactions on Visualization and Computer Graphics

Manuscript ID

TVCG-2020-09-0372

Manuscript Type:

Regular

Keywords:

cylinder detection, markov decision process, primitive fitting, 3D
reconstruction

For Peer Review Only




Page 1 of 15

oNOYTULT D WN =

Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 8, SEPTEMBER 2020 1

Slicing-Tracking-Detection: Simultaneous
Multi-Cylinder Detection from Large-scale and
Complex Point Clouds

Zhuheng Lu, Weiwei Mao, Yuewei Dai, Weiqing Li, and Zhiyong Su

Abstract—Multiple cylinders detection from large-scale and complex point clouds is a historical but challenging problem, considering
the efficiency and accuracy. We propose a novel framework, named slicing-tracking-detection (STD), that detects multiple cylinders
accurately and simultaneously from point clouds of large-scale and complex process plants. In this framework, the 3D cylinder
detection problem is reformulated as a 2D cylinder ingredients tracking task based on multi-object tracking (MOT). Firstly, we generate
slices from the input point cloud, and render them to slice sequence. Then, the lifetime of a cylinder is modeled with a Markov Decision
Process (MDP), where the ingredient is tracked with template and the miss tracking is associated with ingredient proposals through
reinforcement learning. Finally, by applying MDP for each cylinder, multiple cylinders can be detected simultaneously and accurately.
Extensive experiments show that the proposed STD framework can significantly outperform the state-of-the-art approaches in
efficiency, accuracy and robustness. The source code will be available at http://zhiyongsu.github.io.

Index Terms—Cylinder detection, markov decision process, primitive fitting, 3D reconstruction

1 INTRODUCTION

ECONSTRUCTION of process plants is a crucial task for
many applications in the petrochemical industry, such
as facilities maintenance, plant rehabilitation, training and
disaster simulation using virtual reality techniques. Due
to the rapid development in light and ranging (LIDAR)
technologies, very large sets of dense and accurate 3D
points can be collected easily and quickly for large-scale
and complex process plants. Therefore, generating as-built
models of process plants from large-scale 3D point clouds
produced by laser scanners is becoming standard practice
in the petrochemical industry. Most process plant objects
are composed of basic primitives such as planes, spheres,
cylinders, tori, and cones. Cylinders account for the greatest
proportion in these objects such as pipes, sleeves, connectors
[1], [2], [3], as shown in Fig. 1. Therefore, cylinder detection
is the core task in the reconstruction of process plants.
Point clouds of process plants characterize their large-
scale and complex internal structure, which lead to serious
problems in the process of cylinder detection. First, the
plant consists of hundreds of components, and its number
of points can reach the magnitude of tens of millions easi-
ly, which leads to high computational complexity. Second,
hundreds and thousands of cylinders with different sizes
and orientations are contained in realistic process plants.
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(a) Original plant (b) Laser-scanned point clouds

Fig. 1. Three-dimensional process plant model.

For example, a medium-sized process plant usually contains
hundreds of pipelines and each pipeline is composed of
multiple pipes (cylinders). Third, the laser-scanned data in-
evitably suffers from missing region due to limited viewing
angles, occlusions, or unstable measurement in the texture-
less region or specular materials. Therefore, in the commer-
cial sphere, the level of automation in cylinder detection
is still limited, which reveals that accurately and efficiently
detecting cylinders in large-scale point clouds remains a
challenging problem.

Various studies have been conducted on cylinder detec-
tion from point clouds. The first kind of algorithms detect
cylinders in 3D space. The three fundamental techniques are
random sample consensus (RANSAC), Hough transform,
and deep learning-based methods. RANSAC methods [1],
[4], [5] detect one cylinder from the data set at a time. These
methods are applicable to different geometric primitives
but sensitive to noise. Besides, users need to set several
thresholds that vary from model to model. Approaches
based on Hough transform [6], [7] are known as a voting
method with high computational requirements. The time
and space complexities caused by accumulator discretiza-
tion actually degrade performance, especially for the large-
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scale and complex point clouds. Deep neural networks have
been proposed to solve the primitive fitting problem in
both supervised [8], [9] and unsupervised [10], [11] settings.
These works either put emphasis on fitting to specific point
sets, or restrict the number of input points. They cannot
directly scale up to large scenarios due to their high com-
putational and memory costs. Another thread of cylinder
detection methods can be simplified to a circle extraction
problem in 2D space. Projection methods [2], [12] project
the point clouds onto a plane or unit hemisphere and detect
circles in 2D space. However, in practice, these methods not
only cost large calculation but also are sensitive to noise and
outliers. Furthermore, the adverse influence is even more
under the large-scale point clouds with complex internal
structure, which poses challenges to the cylinder detection
from point clouds of large-scale and complex process plants.
In this paper, we propose a novel simultaneous multi-
ple cylinders detection framework, termed slicing-tracking-
detection (STD), for large-scale and complex point clouds
of process plants. The proposed framework consists of three
parts: slicing, tracking, and detection. In the slicing stage, we
generate slice sequence from point cloud of process plant in
arbitrary direction and render these slices to 2D images. The
slicing strategy is beneficial for complex occlusion between
primitives in large-scale and complex scenario. Second, in
the tracking stage, we formulate the multi-cylinder de-
tection problem as a multiple object tracking (MOT) task
taking advantage of continuity between slices. We suppress
noise and interference terms except cylinder ingredients to
robustly associate ingredient detection on a new slice with
previously tracked ingredients. In the detection stage, we
create a Markov Decision Process (MDP) for each cylinder,
so we can detect cylinders with different sizes and orienta-
tion simultaneously through the slice sequence. The main
contributions of this paper are highlighted as follows:

e We propose a novel simultaneous multi-cylinder de-
tection framework, in which the 3D cylinders detec-
tion problem is formulated as a 2D cylinder ingre-
dients tracking task though the multi-object tracking
method, for large-scale and complex point clouds.

e We employ the MDP to model the lifetime of each
cylinder, thus allowing for tracking every cylinder
in its entirety through slice sequence generated from
input point cloud.

e To track cylinder ingredients with deformable ap-
pearance, various features of cylinder ingredients are
designed and integrated into the data association via
reinforcement learning.

e The proposed STD surpasses the state-of-the-art
cylinder detection methods on multiple large-scale
point clouds with regard to efficiency, accuracy, as
well as robustness.

The rest of the paper is organized as follows. We discuss
related work that has been conducted on cylinder detection
from point clouds and multiple object tracking in Section 2.
Section 3 provides an overview of the proposed method for
cylinder detection. In Section 4, Section 5 and Section 6, we
describe our STD algorithm in detail. After that, we present
experimental results in Section 7. Finally, conclusions and
recommendations for future research are given in Section 8.

2 RELATED WORK

In this section, we review a number of previous works on
cylinder detection from 3D point clouds and MOT.

2.1 Cylinder Detection

To efficiently detect cylinders from point clouds, various
kinds of cylinder detection methods have been proposed
over the past decades [8], [13]. In 3D space, existing cylin-
der detection techniques can be classified into three broad
categories: Hough transform, RANSAC, and deep learning-
based methods. Besides, some methods convert cylinder
detection in 3D space to a circle extraction problem in 2D
space.

Hough transform [14] casts a vote for each point in the
input point clouds to detect which points could possibly
contain any geometrical object like cylinders [6], [7] and
sphere [15], [16]. Hough transform detects cylinder by calcu-
lating five parameters: a 2D accumulator for orientation and
a 3D accumulator for the position and radius in the paramet-
ric space. Some authors have improved Hough transform
to speed up the procedure by splitting and pruning the
parametric space. Patil et al. proposed area-based adaptive
Hough transform to estimate multiple cylinder orientation
[17]. However, the time and space complexities caused by
accumulator discretization both restrict these methods to
deal with point clouds of large-scale and complex process
plants. Moreover, they are also sequential methods that
cannot detect multiple cylinders simultaneously.

RANSAC fits a model by using random sampling with
the minimum number of data points [4], [5]. Chaperon et
al. combined the Gaussian sphere with the RANSAC to
extract cylinders and estimate their parameters [18]. Tran
et al. added a validation step into RANSAC to extract
multiple cylinders at the same time [1]. However, with
these RANSAC-based methods users need to set several
thresholds that vary from model to model, especially when
there are noisy data with outliers. Besides, the detection
results depend on the initial selection of points.

Deep learning-based researches have been proposed to
solve the primitive detection problem both in supervised
[8], [9] or unsupervised [10], [11] way. Li et al. introduced
an end-to-end neural network that can detect a varying
number of primitives at different scales [8]. Zou et al.
proposed an LSTM-based architecture that predicts boxes
given input depth images [9]. Tulsiani et al. presented a
volumetric network that predicts a fixed number of cuboids
to describe an input 3D shape [10]. Sharma et al. proposed a
recurrent neural network that parses input shapes into their
constituent modeling primitives [11]. Although these ap-
proaches achieve impressive results for primitive detection,
almost all of them are limited to tiny 3D point clouds (e.g.,
4k points) and cannot be directly extended to large-scale
point clouds (e.g., millions of points) without preprocessing
steps such as block partition.

Recently, several methods take dimensionality reduction
into consideration, so the cylinder extraction in 3D space
can be simplified to a circle extraction problem in 2D space.
Liu et al. projected points of the model onto the plane and
detected circles on a 2D plane [2]. Arajo et al. projected
the point clouds onto a set of directions over the unit
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Fig. 2. Overview of our slicing-tracking-detection pipeline. Given the process plant point cloud, slice sequence is firstly generated. Secondly, the
cylinder is tracked with MDP through the slice sequence. Ingredients between adjacent slices are tracked with templates and the miss tracking is

associated with ingredient proposals using reinforcement learning. Fina

hemisphere and detected circular projections [12]. Given
the cylinder’s axis, Maalek et al. reduced pipe extraction
to extracting the points of a circle on the plane [19]. Ahmed
et al. re-sample the point cloud by slicing and detect circles
using Hough transform [7]. However, the limitation of ex-
isting projection methods is that direct projection can not
handle the occlusions between complex primitives. Besides,
they assumed that the cylinders were run in the three main
orthogonal axes.

Although the mentioned methods show promise in de-
tecting cylinders from point clouds, computational complex-
ity, accuracy and robustness still require further investiga-
tion to provide a comprehensive and generalizable solution
to the multi-cylinder detection from large-scale and complex
point clouds.

2.2 Multiple Object Tracking

The MOT focuses on locating multiple objects, maintaining
their identities, and yielding their individual trajectories
given an input video. MOT is widely used in computer
vision research applications, including video surveillance,
traffic detection, and robotic assistance, etc. Generally, MOT
methods can be classified into Detection-Based Tracking
(DBT) and Detection-Free Tracking (DFT). Recent research
in MOT has focused on DBT, where the main task is the
data association problem in linking object detections to form
correct trajectories. DFT requires manual initialization of a
fixed number of objects in the first frame, then localizes
these objects in subsequent frames.

DBT is more popular because new objects are discovered
and disappearing objects are terminated automatically. On
the one hand, Berclaz et al. [20] , Shitrit et al. [21], Li et al.
[22], Park et al. [23], Valsangkar et al. [24] and Zhang et

lly, all cylinders are detected simultaneously by employing multiple MDPs.

al. [25] solved MOT problem from a global optimization
perspective with flow graph. On the other hand, online
methods have also been proposed such as Oh et al. [26]
and Khan et al. [27], in which they utilized Markov Chain
Monte Carlo (MCMC) to estimate the association. Bae et al.
[28] , Kalal et al. [29] and Kim et al. [30] introduced learning
to track into MOT. Milan et al. [31] used Recurrent Neural
Networks (RNN) to encode the state-space and solve the
association problem. In our work, we extend and improve
the MDP framework for MOT proposed in [32], which is an
online method that uses reinforcement learning to solve the
data association problem.

3 ALGORITHM OVERVIEW

The proposed STD framework covers three major steps:
slicing, tracking, and detection, as illustrated in Fig.2.

The first phase is slice sequence generation. For each
input point cloud, we firstly create continuous slices with
the cross section parallel to the ground. Then, we render
the extracted points of each slice into images. This mapping
from 3D space to 2D space contributes significantly to
reducing computational complexity.

The second phase is cylinder tracking from slice se-
quence. We convert cylinder detection in 3D space into
cylinder ingredients tracking from slice sequence in 2D
space. Inspired by MOT in videos, we propose a novel
algorithm for extracting multiple cylinders in the same
sequence. Due to the relevance between slices, the method-
ology of MDP [33] is introduced to describe the correlation
through the sequence. We formulate an episodic task for
each cylinder, where the lifetime of a cylinder is the length
of episode and modeled with an MDP. Once one cylinder is
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Fig. 3. An example of slice sequence extraction. (a) Slice extraction from the point cloud of process plant. (b) Example of slice rendering.
Slice Ingredient detection Template Data Terminal Lifetime of
Sequence offline for each slice tracking association validation cylinders

Fig. 4. Diagram for cylinder lifetime modeling using MDP. Cylinder ingredients are firstly detected offline for each input slice. Then, Online ingredients
are tracked with templates and Offline ingredients are associated with proposals. Finally, the cylinder terminal is validated by backtracking the

sequence.

traced completely, initial and terminal states are tagged to
determine the episode of the cylinder.

The third phase is simultaneous multi-cylinder detection
with MDPs. We create an MDP for each cylinder based on
the method in the second phase, so we can detect multiple
cylinders simultaneously through the slice sequence. The
appearance and disappearance of the cylinders can be treat-
ed as state transitions in the MDP.

4 SLICE SEQUENCE GENERATION

The slice sequence generation algorithm contains two major
steps, as shown in Fig.3. First, a set of slices is extracted from
the input point cloud. Then, these slices are used as ren-
dering primitives to generate slice sequence X = {z;}£ |,
where L is the number of slices.

4.1 Slice Extraction

The input point cloud is cut into slices based on specified
parameters: the interval Int and the section neighborhood
0. It should be pointed out that, in theory, the slice extraction
direction can be arbitrary. In this paper, we choose the plane
parallel to the ground as the cross section to extract the
slices, since the majority of pipelines and equipment in
process plants are perpendicular or parallel to the ground.

Given a process plant point cloud, we first calculate its
axis-align bounding box. Then, the set of points is divided
into L = floor(H/Int) blocks perpendicular to the z-axis
through L — 1 cross sections, where H is the height of
bounding box. Finally, the neighboring points of the i-th
cross section with its height h;, whose z-value is within
[hi =0, h;+0], are selected as the intersection points between
the i-th cross section and point cloud.

4.2 Slice Rendering

For each cross section, we render its intersection points to
a w x h slice image z; through orthogonal projection. Then
we can get the final image sequence of the input point cloud
and refer to it as the slice sequence X = {z;}% ;. We record
the mapping relation between slices and 2D images which
will be used to recover cylinders from slice sequence in
the following section. Fig.3 illustrates the slice generation
process in the z-axis.

5 CYLINDER TRACKING UsSING MDP

In this paper, cylinder detection in 3D space is formulated as
the cylinder ingredients tracking and association among 2D
slice sequence, as shown in Fig.4. The lifetime of a cylinder
is modeled with an MDP. For every slice z; in a sequence
X, cylinder ingredient detector first detect all cylinder ingre-
dients offline. Afterwards, cylinder ingredients are tracked
based on the ingredient templates through the sequence.
Generally, cylinder ingredients and detected proposals need
to be associated when the cylinder ingredients are not con-
stantly tracked in the tracking process. Finally, the cylinder
terminal is validated by backtracking the sequence.

5.1 Cylinder Lifetime Modeling with MDP

In our framework, the lifetime of a cylinder is de-
scribed as an MDP which consists of the tuple
(S, A,T(,),R(--),7(--)), where:

o States s € S encode the status of the target.

e Actions a € A dictate the actions that can be taken.

e The state transition function 7' : S x A — S defines
the state transition based on an action.

e The real-valued reward function R : S x A — R
describes the immediate reward received after exe-
cuting action a in state s.
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Fig. 5. The MDP in our framework. Cylinder ingredient tracking between
adjacent slices can be considered as a decision-making process in four
states: Positive, Negative, Online, and Offline. a; dictates the action for
state transition.

e The policy 7 : § — A is a mapping from the state
space S to the action space A in MDP.

The state space S is composed of four subspaces: Positive,
Negative, Online, and Offline, which represent four status of
the cylinder episode, as illustrated in Fig.5. Thus, cylinder
ingredient association among adjacent slices can be con-
sidered as a decision-making process in these four states.
MDP is made up of transitions between different states and
corresponding actions. When a proposal is captured by the
cylinder ingredient detector, it is tagged with a Positive state
which is the initial state for the proposal. MDP transfers
to an Online state when the proposal is recognized as the
cylinder ingredient, which is the beginning of the cylinder.
In contrast, the proposal is abandoned as it enters the Nega-
tive state. An Online cylinder ingredient may keep Online, or
be transferred to an Offline state when it cannot be tracked.
But the Offline cylinder ingredient can return to Online while
it is rematched by MDP. Otherwise, the Offline ingredient is
transferred to the Negative state. Through backtracking the
Offline state, we can get the terminal position of a cylinder.

The policy 7 is a mapping from the state space S to
the action space A in MDP. Given the current state of the
ingredient, a policy is the probability distribution of actions
to be taken. Equivalently, the decision-making in MDP is
performed by following a policy. The goal of policy learning
is to find a policy that maximizes the total rewards obtained.

5.2 Cylinder Ingredient Detection

Cylinder ingredients in our issue are the intersection patches
between cylinders and cross sections in 2D slice images.
For our ingredient detection framework, we generate the
training data in advance. Given the input sequence X, the
cylinder ingredient detector first selects cylinder ingredient

//

(

Fig. 6. An example of different cylinder ingredients in slices with different
cutting directions.

proposals D; = {dik}gi1 in each slice z; offline, where N; is
the number of proposals in x;. These proposals will be used
in data association in the following section. Then, the MDP
determines whether the proposal in a Positive state belongs
to a cylinder or not.

5.2.1 Training Data Generation

To train the cylinder ingredient detector and sort the propos-
als, a variety of cylinders with different radius and length
are selected from point clouds of different process plants to
generate the training data. The selected cylinders are both
intact and perforated to ensure the integrity of samples. For
each input cylinder, we sample the neighboring points with
the cross section similar to the slice generation method in
Section 4.1. To obtain the ingredients with different shapes,
the cross section crosses the cylinder from different angles
and positions. Specifically, with the fixed angle interval, the
cross section is rotated on a rotation axis from the initial
position, as showed in Fig.6. Then, the initial position of
cross section is translated from bottom to center of the
cylinder with the plane step, while the rotation axis is
translated with axis step in the cross section. Afterwards,
the sampled points are rendered to an image which is
normalized simultaneously.

In addition to the real datasets described above, synthet-
ic cylinder point clouds are also generated in our approach.
The synthetic cylinder dataset is automatically generated
with different radius, length, and density. Likewise, we
generate training data with the synthetic dataset.

5.2.2 Proposals Detection

A cylinder ingredient detector is presented to detect all
deformable proposals D; = {d;;},", in each slice z; as
cylinder ingredient candidates. Due to the diverse orien-
tation, the appearance of cylinder ingredient in slices may
be a variety of regular and irregular shapes. Fig.7 shows
examples of different shapes of cylinder ingredients. For
each patch scanned by the scanning-window, a cascaded
classifier is designed to determine the probability of a
proposal existence. The classifier consists of part variance
and ensemble classifier which both rejects the problematic
patches.
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Fig. 7. Four examples of cylinder ingredients in slices. Ingredients with
red boxes belong to invariant class L;,,, and ingredients with blue boxes
belong to the variant class L.

The part variance rejects all patches whose location
scores of proposals are smaller than §, through the De-
formable Part Models (DPM) method [34]. Specifically, a
cylinder ingredient is considered as a multi-part symmetric
model due to the deformable appearance of the proposal.
The model is defined by a coarse root filter F;. and n parts
filters {F1,..., F,}. The score of filters specifies a feature
map for a finite number of scales in a fixed range. Let vy
denote the vector obtained by concatenating the feature
vectors in the subwindow of a feature pyramid with top-
left corner in row-major order. Let F’ be the vector obtained
by concatenating the weight vectors in the filter F' in row-
major order. Therefore, the location score s4 of the model at
a particular position and scale within a slice is defined as

54 = 70,1, (%0, Y0) + Z dim,to—2(2(05 Y0) + qm) +ba (1)

m=1

where g, (20, yo) = F,i - vy (2o, Yo, lo) is the response score
of the root filter at the given location (g, yo) and scale Iy, A
is the number of levels we need to go down in the feature
pyramid, gy, is the deflection coefficient between m-th parts
filter and root filter while by is the deflection coefficient
between parts filters. Here, d,, ;,—x is the maximum con-
tribution of the m-th parts filter, which is computed as

dm,l (;Ij ) y) =
max (Fy, - vg (e + dy + dy, 1)) — do - va(dr,dy) @
x’ y
where (dz, dy) is the displacement of the part relative to its
anchor position, d,, is the coefficient of deformation cost,
and vg(dz,dy) = (dz,dy,dx?, dy?) is deformation feature.
Further details can be found in [34].

The ensemble classifier consists of E base classifiers
and rejects the patch that the average posterior of each
base classifier is smaller than .. Each base classifier
B; € {Bi,...,Bg} performs () pixel comparisons [35]
on the patch. Then, each comparison returns 0 or 1, and
these measurements are concatenated into a binary code
a € RY which indexes to an array of posteriors P;(8|a),
where 8 € {0,1}. Posterior probability is estimated as

P
P(Blo) = 5
of positive and negative patches, respectively. The score of

average posterior is defined as

_ Zf P;(Bla) 3)
E

, where Np and Ny are the number

Se

5.2.3 Ingredient Determination

After detecting all proposals, the MDP learns the policy =
for those proposals in Positive state. A binary Support Vector
Machine (SVM) is trained to sort proposals into Online or
Negative with the training data sets. The MDP transfers
the proposal which is determined as a cylinder ingredient
into an Online state. Then, the Online cylinder ingredient
t is added into the ingredient set 7. The normalized 6-
dimensional feature vector vp used in the classifier contains
coordinates, width, height, score of the proposal, and the
orientation label. The reward function Rp in Positive state is
defined as

Rp(s,a) = y(a)(wgvp(s) + bp) 4)
where (wp, bp) defines the hyperplane in SVM, y(a) = +1
if action a = a1, while y(a) = —1 if a = agy, as illustrated in

Fig.5.

The cylinder ingredients are classified into two groups
to improve the tracking accuracy in the following track-
ing phase. It is worth to point out that appearance d-
ifferences exist between cylinder ingredients in the slice
sequence because of the diverse orientation and internal
occlusion of cylinders. For example, the appearance of a
cylinder ingredient is a circle if the direction of the cross
section is perpendicular to the cylinder. In addition, the
horizontal section generates the cylinder ingredients with
long strip appearance while the slant cut surface generates
the cylinder ingredients with elliptic appearance. Therefore,
two subclasses of the cylinder ingredients are defined as
the invariant class L;, and the variant class L,, based
on the orientation label. For the beveled ingredient, we
classify them as the invariant class because of the invariable
appearance between the adjacent slices. This means that
each ingredient with the variant label will typically have
a bounding box whose width varies regularly through the
sequence, while the ingredient with the invariant label will
maintain a square with constant aspect ratio over time.

5.3 Tracking with Templates

For an Online cylinder ingredient, the MDP needs to learn
the policy and determine whether to keep tracking the
ingredient with the ingredient template or to transfer it into
an Offline state. Tracking template updates with the state
transition of the cylinder ingredient.
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10 Fig. 8. The appearance of the cylinder ingredient is represented by a template in a slice. Cylinder 1 in blue bounding box is tracked stably in slice
11 6,16,24, respectively. Cylinder 2 in green bounding box is tracked in slice 6 and slice 16, but is Offline in slice24 due to the missing points.
12
13 5.3.1 Template Tracking Finally, we define the reward function in a tracked state s
14 i i =
15 The optical flow-based template tracking algorithm is em- with feature representation von(s) = (¢rB, €mean)
16 ployed for the tracking component of STD, since our key
17 observation is that the displacement of cylinder ingredient y(a), if L, = 1, epp<eg and epean<er;
18 between a.djaceth slices: is sr.nau and regular. The appearance R, (s,a) = if Ly =1, epp<ep and emean>€2;
19 of the cxl1nder 1ngred1ent is simply .represgnte(.i by a tem- —y(a), otherwise
plate which is an image patch of the ingredient in a slice, as )
;? illustrated in Fig.8. To be specific, whenever a cylinder ingre- |, 1110 eo , e1 and e, are fixed thresholds, y(a) = -+1 if action
filent is transfer.red to the Onll'ne state, we initialize the track- | _ as, while y(a) = —1 if a = a4, as illustrated in Fig. 5.
22 ing template with the bounding box of the proposal. Then,
23 given a pixel v = (ug,uy,) on the template, we can extract 532 Template Updating
24 the corresponding location u, = u+8, = (uy+0,, uy+0d,) of
25 ingredient in the new slice using the iterative Lucas-Kanade The. appearance model of the template needs to bff updated
26 method with pyramids [36], [37], where 6, = (3,3, is the Flurmg the tl“ackmg process to prevent acct.lmulaFmg tra'lck-
27 optical flow at u. Further details can be found in [36], [37] 1Ng Errors, smce the ap pearance‘of the cylinder ingredient
28 To i . may be variable through the slice sequence. In our case,
o improve the matching accuracy, Forward-Backward ) . .
. . . . we take advantage of the updating rule with the shift of
29 (FB) error [29] is used to filter matching mistakes. The FB . . . .
1 . . . tracking state. As stated above, the ingredient template is
30 error of a pixel is defined as the Euclidean distance between . " " : . . .
. . " initialized with the bounding box of detected ingredient.
31 the original pixel and the forward-backward prediction. . PO
32 Given a pixel u and the corresponding matching pixel u The tracking template stays the same if it is able to track the
we can compute the backward flow of pixel w. to t}fe, cylinder ingredient. Once the current template fails to track
33 . compH . P - + the cylinder ingredient due to the appearance changing,
34 cylinder ingredient template and obtain a new prediction « . . . - . )
R the MDP transfers the cylinder ingredient into an Offline
35 Therefore, the Forward-Backward error of a pixel is denoted . .
. 9 ) state and relies on data association to handle appearance
36 by e(u) = [[u—wu |. The median of the FB errors oAf4all changing and continue tracking. The tracking template is
37 sampled pixels is denoted by erp = median({e(u;)};Z), reinitialized with the associated proposal when the cylinder
38 where M), denotes the total number of pixels. We filter out ingredient is transferred from Offline to Online. Meanwhile,
39 the matching if the corresponding epp exceeds the threshold  MDP stores past K templates of the ingredients in the Online
40 €0- state when computing their area size Oy, which will also be
41 In a slice sequence X, each cylinder should be assigned used for data association in Offline state.
42 a unique identity that stays constant. However, the cylinder
43 ingredient may be inseparable from the other one through- e . . .
44 out the sequence. Besides, some other primitives ingredient 5'4' Daté Association via Remforcem.en.t Learning
45 in slices may be a circle, such as a sphere, which is similar This sectlop focqses Or.l the data association problem be-
46 to the cylinder. Therefore, these interference terms have to  tween Qﬁ‘llne .cylmd.er ingredients and the prqposals .from
47 be filtered along with the cylinder episode. tche cy.hnder ingredient detector. For an Oﬁ‘lzne cylinder
48 To avoid blending identity of close cylinders and filter mgredlen.t, the MDP needs to learn th.e policy whether to
49 the interference, we examine the past K cylinder ingredi- keep the .mgredlent‘ as Offline, transfer it to an.On.lme state,
50 ents, and compute each area size Oy, of the bounding box. ©f mark it as Negative. The gr.ound truth data 1 firstly pre-
51 The observation is that the cylinder ingredient belongs to pareq based on .three annotation rules. Then, rem'forcement
52 the same cylinder is almost invariant if it is in the invariant learning is applied to learn the parameters of a binary clas-
=3 class L;, mentioned above. Accordingly, we compute the sification model, which is desired to solve the association
54 area difference of bounding boxes E(k) =| Ogt1 — Oy | problem.
between the cylinder ingredients in adjacent slices. emean =
55 K1 4.1 D. P [
56 mean({E(k)}£!) is the mean area difference for ingredi- 94 ata Preparation
57 ents in the past K slices. On the contrary, for the cylinder The strategies proposed in MOT Challenge 2015 [38] are
58 ingredient in variant class L,,, the area difference E(k) adopted to prepare slice sequences for training and testing.
59 between adjacent slices is larger than threshold value e;. To generate ground truth data for data association, we use
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the bounding box to align with the extent of the ingredient. TABLE 1
Specifically, the annotation rules are represented as follows. Feature Representations Used for Data Association
First, the bounding box of the ingredient should contain
all pixels belonging to that ingredient and approximate the ) o
extent of that object accurately at the same time. Second, the Type Notation Feature Description
label of orientation is assigned to the ingredient through the .
entire interactive session, which is classified into invariant ngg Offr Otrl;e iﬂ:dir;irfgr‘?’:fidiﬁszaﬁ
and variant classes. Third, the ingredient annotation starts FBerror | vy €R* |} ¢ upper half, and lower half of %he
as early and ends as late as possible to accurately represent templates in optical flow, respectively
the lifetime of the cylinder. Mean of the median Normalized Corre-
o NCC vs €R lation Coefficients (NCC) betwegn image
5.4.2 Data Association PatCh;Sf around thleﬂmatched pixels ob-
. . . . . . tained from optical flow
Let t;; € T denote an Offline cylinder ingredient in slice P :
x;, and d;; be an ingredient proposal in D;. The goal of NCC vs € R E/S[eirf‘ ?dféhe E)C;;et:;fnt;?agreegitf&i
data association is to predict the label y € {+1,—1} of bounding b}(j)xe}; from optical ﬂgw
the pair (t;;,d;;) indicating that the ingredient is linked Mean of the ratios in bounding box
(y = +1) or not linked (y = —1) to the proposal. To Height v, c R | height between the proposal and the
solve the association problem, a binary classification model ratio 4 predicted bounding boxes obtained from
is designed to determine whether a cylinder ingredient is optical flow
linked to the proposal or not. Specifically, we perform the Height vs ¢ | Ratio in bounding box height between
binary classification using a real-valued linear function ratio the cylinder ingredient and the proposal
Mean of ratios between height and width
T
f(tija dik) = ('LUOH) U(tija dik) + bog (6) ﬁ?zie;t vg € R of predicted bounding boxes obtained
from optical flow
where (wog, bogt) are the parameters that control the func- P -
tion, and v(t;, d;1) is the feature vector which captures the Mean of the bounding box overlaps be-
e ijy Qik . - . - P Overlap vr € R | tween the proposal and the predicted
similarity between the Offline cylinder ingredient ¢;; and the bounding boxes from optical flow
proposal dik- The rule is given by y=1 lf_ f (tij ’ dik) =0 Score vg €R Normalized proposal score
else y = —1. Therefore, the reward function for data as-

. . . . . Euclidean distance between the centers
sociation in an Offline state s with feature representation _ of the cylinder ingredient and the pro-
UOH(3> = {’U(tij7 dik)}kpz1 is defined as Distance vo €R posal after motion prediction of the in-

gredient with a linear velocity model
P T
Rog(s,a) = y(a) (I]?:ai(«wOﬂ“) 'U(tija dix) + bost)) () Orientation | , ¢ R Labs'l ditffergrﬁf between lthe cylinder in-
label gredient and the proposa
where y(a) = +1 if action a = ag, y(a) = —1 if a = as,

as illustrated in Fig.5, k indexes P potential proposals for
association. Then, the task of policy learning in the Offline
state turns into learning the parameters (wog, bog) in the
decision function.

5.4.3 Feature Representation

The 13-dimensional feature vector v(t;;, dix) is used to cal-
culate the similarity between an Offline cylinder ingredient
t;; and a proposal d;;,. Details of our feature representation
are given in Table 1. First of all, the history of the cylinder
ingredient is represented by K templates in the past K
slices when the cylinder ingredient is being tracked before
it transfers to the Offline state. Second, given the ingredient
proposal d;;, we compute optical flow from each template
to the proposal. Then, we measure the quality of the optical
flow in different aspects and use the metrics as features.
Besides, the label of orientation and the aspect ratio of the
bounding box are also added into the feature representation
to facilitate tracking cylinders in different directions.

5.4.4 Parameters Learning

The binary classifier for data association is trained with
reinforcement learning using slice sequences in our MDP
to learn the value of the parameter pair (wos, bost), like the
strategies proposed in [32]. The initial weights (wg, by) and
empty training collection Py = () are the initialization value

for training. Given the training sequences and correspond-
ing ground truth trajectories, our goal is training the MDP
to successfully track all ingredients. Therefore, the training
algorithm follows the current policy of the MDP to track
the ingredients by looping over all the sequences and all the
ingredients.

The binary classifier is updated only when the MDP
makes a mistake in data association. In this case, the MDP
takes a different action as indicated by the ground truth
trajectory. Suppose the MDP is tracking the j-th cylinder ¢;
in sequence X. Two different mistakes may occur due to the
complex disturbing term if the MDP is in an Offline state on
the i-th slice x;. The first one is that the MDP associates the
cylinder ingredient ¢;; with the wrong proposal d;;. Then,
v(tij, d;i) is added in the training collection P as a negative
example. The other is that the MDP decides not to associate
the cylinder ingredient to any proposal, but the cylinder
ingredient is visible and correctly detected by a proposal
d;, according to the ground truth. Therefore, v(t;;,d;x) is
added in the training collection P as a positive example.

The binary classifier is updated by re-training it on
the new training collection when the training collection is
augmented with the pair of feature v and corresponding
label y € {41, —1}. Specifically, given the current training
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collection P = {(vpm, ym)}M_,, we solve the following soft-
margin optimization problem by adding a slack variable ¢,
to obtain a max-margin classifier for data association:

1 M
. 2
min = || w +@ Z €
worst,bost,Em 2 ” o H m=1 " ®)

s.t. ym(wgffvm + bOff) >1—¢€m,em 20

where ¢, is a slack variable, ® is a regularization parameter.
Once the classifier has been updated, we obtain a new policy
which is used in the next iteration of the training process.
We keep iterating and updating the policy until all the
ingredients are successfully tracked.

5.5 Terminal Validation

The backtracking method is applied to validate the cylinder
terminal from the ingredients in Offline state. We transfer the
cylinder ingredient into a Negative state and put an End tag
on it if the cylinder ingredient is stuck in Offline state more
than 7 slices. Accordingly, the end of the cylinder appears.
To get an accurate terminal, we backtrack the slices that con-
tain cylinder ingredients in Offline state and mark the first
one as the end of the cylinder. Then, we store parameters of
cylinder episode including terminal coordinate, orientation
as well as location, and recover the points of cylinder c¢; € C
using the mapping recorded in slice rendering base on these
parameters.

6 SIMULTANEOUS MULTI-CYLINDER DETECTION

After learning the policy and reward of the MDP, MDP
is applied to detect multiple cylinders simultaneously. We
create an MDP for each cylinder episode, so that the MDP
determines the length of cylinder episode guided by the
policy.

More specifically, given a new input slice, the ingredients
in the Online state enjoy the priority in tracking and associ-
ation progress. An Online ingredient keep Online state if it
can be tracked in the following slices. Otherwise, it transfers
to Offline state. Then, the pairwise similarity is computed
between Offline ingredient and proposals which are not
covered by the Online ingredients, where proposals covered
by Online ingredients are suppressed to reduce ambiguities
in data association. The similarity score is computed by the
binary classifier for data association. After that, the Hungar-
ian algorithm [39] is used to obtain the assignment between
proposals and Offline ingredients with the similarity scores.
According to the assignment, Offline ingredients which are
linked to some ingredient proposals are transferred back to
Online states. Otherwise, they stay as Offline. Besides, an
MDP is initialized for each ingredient proposal which is
not covered by any tracked cylinder ingredient. Algorithm 1
describes our multiple cylinders detection algorithm using
MDPs in detail.

7 EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS

In this section, we firstly demonstrate the accuracy of STD
on four large-scale and complex point clouds of process

Algorithm 1: Simultaneous multi-cylinder detection
with MDPs
Input: A slice sequence X = {z;}L ;, cylinder
ingredient proposals D; = {d;;,} ", of each
slice x;, weights (wog, bog) of binary classifier
for data association
Output: Cylinder ingredient set 7 = {t,;}, detected
cylinder set C = {¢;}7_,
1 Initialization: 7 = 0; C = 0);
2 foreach slice x; in X do

3 //process ingredients in Online
states
4 foreach Online cylinder ingredient t;; in T do
5 Track the ingredient with template according
to section 5.3, move the MDP of ¢;; to the next
state;
6 end
7 //process ingredients in Offline
states
8 foreach Offline cylinder ingredient t;; in T do
9 foreach proposal d;;, not covered by any Online
cylinder ingredient do
10 Compute

f(tijs dir) = (wom)Tv(tij, dir) + bos;
11 end

12 end

13 Data association with Hungarian algorithm for the
Offline cylinder ingredients according to Section
5.4;

14 foreach Offline cylinder ingredient t;; in T stays
Offline in more than T slices do

15 Transfer the cylinder ingredient ¢;; into
Negative according to Section 5.5;

16 Recover cylinder c;;

17 C=CUcy

18 end

19 // initialize new cylinders

20 foreach proposal d;j, not covered by any tracked
cylinder ingredient in T do

21 Initialize a MDP for a new cylinder ingredient
t;; with proposal d;z;
2 T=TUty;
23 end
24 end
TABLE 2

Model Statistics

Model Model 1 Model 2 Model 3 Model 4
Points 35,290,033 25,765,409 110,169,866 231,981,431
Nt 109 52 116 353

plants. Then, we demonstrate the robustness of STD against
noise and occlusion. Finally, we systematically evaluate the
overall efficiency of STD on real-world large-scale point
clouds.
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TABLE 3
Performance Comparison of Cylinders Detection with Three Evaluation Metrics

Recall ratio rg

Error ratio rg

Precision ratio rp

method

STD [17] [2] [4] [1] STD [17] [2] [4] [1] STD [17] [2] [4] [1]
Model 1 0.899 0.642 0523 0486 0.587 0.045 0275 0.367 0752 0.624 0.951 0.700 0.588 0.392 0485
Model 2 0.904 0.615 0442 0557 0.673 0.038 0.346 0461 1.192 0.615 0959 0.640 0.511 0.318 0.522
Model 3 0914 0552 0405 0.526 0.567 0.052 0.302 0491 1.138 0.517 0946 0.646 0452 0316 0.524
Model 4 0.878 0.532 0430 0.337 0532 0.056 0373 0453 1.255 0.501 0.939 0588 0487 0212 0.515

Original model Ground truth Patil et al.[17]

Liu et al.[2]

Schnabel et al.[4] Tran et al.[1] STD (ours)

Fig. 9. A collection of qualitative results we generated on four scanned large-scale and complex point clouds of process plants by applying our
approach and methods in [1], [2], [4], [17]. Ground truth is shown in the second column.

7.1 Experimental Configuration

Experimental Dataset. Four real-world scans of large process

plants are tested in our experiment. These large-scale and
complex point clouds contain a variety of pipes, joints and
other structures, whose statistics are shown in Table 2,
where N7 is the number of total true cylinders. Thereinto,
Model 4 represents the largest scenario which contains
231,981,431 points and 353 cylinders in the 33 meters x 25
meters X 26 meters scene.

Parameter settings. In this paper, the interval Int and
the section neighborhood §; for extracting slices in Section
4.1 are respectively set to be 0.1 and 0.035 meters based
on scanning precision. Slice sequences in Section 5.2 are
generated with rotation parameters as follows: angle step
San= b degrees, axis step s4; = 1 cm, plane step s, = 1 cm.
The initial bounding box in proposal detection is generated
with the following parameters: scale step s;= 1.2, horizontal
step sp, = 5 percent of width, vertical step s, = 5 percent of
height, minimal bounding box size s; = 40 pixels. Besides,
two thresholds §,; and 6. in proposals detection are set to be
65 and 50, respectively.

Implementation details. The algorithms designed in this
study and all comparisons are performed on a desktop PC

with Intel(R) Core(TM) I7 CPU and 8-GB RAM. Since the ex-
isting deep learning-based methods cannot directly scale up
to large-scale point clouds due to their high computational
and memory costs, we only compare our method with the
cylinder detection methods proposed in [1], [2], [4], [17].

7.2 Accuracy Evaluation

In the experiment, we qualitatively and quantitatively e-
valuate the accuracy of the proposed method for detecting
cylinders. Three different evaluation metrics [2], [17] are
designed as below:

o Recall ratio rg = Ng/Np. An algorithm that has
a good capacity of recognizing more true pipelines
should have a higher value of recall ratio.

o Error ratio rg = Np/Nrp. An algorithm may output
a huge number of pipelines that include all true ones.
However, a good algorithm should have a low error
ratio at the same time.

o Precision ratio rp = Np/(Ng + Nf). Ng + N is
the number of cylinders that are detected by the
algorithm. We use rp as an auxiliary measure to
evaluate the algorithmic performance.
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[17]

Patil et al.

Liu et al.
[2]

Schnabel et al.
[4]

(11

Tran et al.

STD

Without noise 2% 5% 10%

Fig. 10. Cylinders detected by the compared techniques with different
levels of noise. The top row shows the original models with different
levels of noise.

We define the number of true pipes recognized by the
algorithm as Np, and the number of false pipes that output
from the algorithm as Np.

Fig. 9 demonstrates a collection of qualitative detection
results on four scanned large-scale models applying differ-
ent methods. The blue points represent detected cylinders.
Accordingly, the different results of STD and state-of-the-
art cylinder detection methods [1], [2], [4], [17] can be seen
in Fig. 9, respectively. These results show that our method
is successful in detecting most of the complete and partial
cylinders from large-scale and complex point clouds.

To illustrate the accuracy of STD, we compare our
method with cylinder detection methods in [1], [2], [4],
[17]. From the Table 3, our cylinder detection algorithm
outperforms the other detection approaches for all three
metrics rr, 7g, and rp. Table 3 quantitatively illustrates
that our method improves the recall ratio 7z on average
by 54, 101, 95, and 53 percent, respectively. For the most
complicated Model 4, our method is especially effective,
which improves the recall ratio by 98 percent on aver-
age. Besides, our evaluation procedure confers a strong
advantage on error detections in terms of error ratio rg.
False detections are produced when we fit cylinders in 3D
space considering the noise and complex structure. On the
contrary, our method produces one false alarm in Online and
Offline state respectively according to the adjacent slices. As
illustrated in Table 3, the MDP decreases error ratio by 84,
89, 95, and 91 percent, respectively. Table 3 also shows that
our method outperforms the cylinder detection methods in
[1], [2], [4], [17] considerably on precision ratio rp.

L] L]

L L

STD Patil et al. [17]

Fig. 11. A close-up view of STD(left) against outliers compared with the
area-based method in [17](right). STD is robust against outliers while
area-based method is sensitive to outliers. The green points are the
original part and the blue points are the detected cylinders.

7.3 Robustness Evaluation

In a large-scale and complex process plant scene, the per-
formance of cylinder detection from point clouds is limited
by noise, mainly including clutter around cylinders, similar
primitives and object occlusion. To illustrate the robustness
of our method against noise and occlusion, STD was tested
on complex process plants.

Noise. The robustness of STD against different levels of
noise is demonstrated in Fig.10. Gaussian noise with zero
mean and standard deviations of 0-10% is firstly added
to the point cloud. STD still achieves good results when
processing the point clouds corrupted by Gaussian noise
directly. The reason is that the local density of point clouds
can keep the ingredient outline distinct when the slices are
generated. Therefore, dimensionality reduction can decrease
the impact of Gaussian noise. Fig.10 also shows a quantita-
tive comparison of our STD with the methods in [1], [2], [4],
[17].

Outliers. Fig.11 illustrates the robustness against outliers
including clutter around cylinders and similar primitives.
To make the contrast even more remarkable, we mark the
original model with green points and the detected cylinders
with blue points. With template matching and interference
filtering in the tracking process, our method can deal with
the clutter around the cylinders. For the interference prim-
itives, the ingredient detector can successfully discriminate
ingredients at the detection stage. In addition, interference
terms also can be filtered at the tracking stage base on the
two different classes of feature representation. Fig.11 shows
that our methods outperform the Area-based method [17]
when facing the outliers.

Occlusion. As can be seen from Fig.12(a), complex oc-
clusions exist in realistic process plant scenarios. In such a
scenario, pipes may traverse the operation platform. Direct
projection in [2], [12] is not applicable in this scenario. In
contrast, our method is more effective in handling these
occlusions due to the dimension reduction, which not only
reduces computational complexity, but also moderates the
connection complexity between structures. Fig. 12(b) and

For Peer Review Only



oNOYTULT D WN =

Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 8, SEPTEMBER 2020 12

TABLE 4
Computing Time and Ratio between the Computing Time and Points Number

Time(sec) Ratio
Model
STD [17] 2] [4] [1] STD [17] [2] [4] [1]
Model 1 210 756 537 622 6174 0.595 2142 1522 1.762 17.495
Model 2 175 588 401 514 4563 0.672 2282 1556 1995 17.710
Model 3 256 2156 1744 1880 19742 0.232 1957 1583 1706 17.919
Model 4 607 4895 4121 4457 43252 0.261 2110 1.776 1921 18.644
—+-STD Patil et al.[17] Liu et al.[2] Schnabel et al.[4] —— Tran et al.[1]
Time(sec)
50,000
40,000
30,000 /
20,000 /
10,000
0
Model 1 Model 2 Model 3 Model 4

(@)

(b)

©

Fig. 12. Part of the petrochemical plant dataset with occlusion. (a) The
detection result in occlusion scenarios with STD. (b) A close-up view
of a local platform. (c) A close-up view of a local platform using the
projection method in [2]. The blue points are the extracted cylinders
using our method.

Fig. 12(c) present a close-up view of experiment results
using our approach and method in [2], respectively. It can
be clearly seen that our approach is successful in detecting
multiple cylinders when facing the occlusions.

7.4 Efficiency Evaluation

To demonstrate the efficiency of STD, we compare our
method with methods [1], [2], [4], [17] on the same four
models, as shown in Fig.13. Table 4 shows the computing
time of our method and other state-of-the-art methods [1],
[2], [4], [17], which quantitatively demonstrates the efficien-
cy and competitiveness of our method. As stated earlier, the
cylinder detection method in 3D space has high complexity

Fig. 13. Efficiency comparison with the methods in [1], [2], [4], [17].

TABLE 5
Time Comparison between Different Sampling Rate

Time(sec) p=1l  p=2 p=3 pu=5
STD 149 152 153 158

Patil et al. [17] 227 475 701 1347
Schnabel et al. [4] 332 687 1131 1804
Liu et al. [2] 202 392 694 1201
Tran et al. [1] 1632 3511 5042 9153

with respect to time. This is made even more severe when
the number of points reaches the magnitude of tens of
millions. In contrast, our method reduces the computational
complexity using dimensionality reduction since the pro-
posed method maps the point clouds to the pixels in images.
Computation time depends on the number of slices and
the number of cylinders. Therefore, our method is an order
of magnitude faster, which is a major contribution of this
paper.

It is worth to point out that the algorithmic complexity
of STD is independent of the local sampling density of point
clouds. In Table 5, we compare the time consumption of our
method with the state-of-the-art methods at the different
sampling rates. The original point cloud model shown in
Fig.2 is represented as a uniform probability distribution
in according with the local sampling density. From the
experiments, the computing time of other methods linearly
increases as the number of points increases. Therefore, in
practice, down sampling of point clouds always need to
be firstly conducted before we adopt the methods in 3D
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1

(a) Miss detection

(b) False alarm

Fig. 14. Two typical failure cases. (a) Cylinder ingredient with severe
defect. (b) Objects with strip structure.

space, such as the RANSAC-based method [1] and area-
based approach in [17]. However, density sampling will
bring significant influence to the detection results. For STD,
the local sampling density and number of points have little
effect on computing time, even when the rate y of the local
point density reaches 5. Thus, our algorithm is feasible for
the models with high sampling density.

Besides, our approach is not subject to the scale of
the point numbers but the number of slices. We define
Tove = 10° x T, /N, to describe the relationship between
the computing time and points number, where T, is the
computing time and N, is the number of the points. As
can be seen in Table 4, the methods in [2] and [17] have
an empirically linear time complexity with respect to the
point number, which does not conform to our method. The
superiority of our approach is demonstrated in models with
more points. Particularly, the point number of Model 4 in
Fig.9 is almost six times more than Model 1, but the time
consumption of Model 4 is just three times the Model 1.

7.5 Limitation and Failure Cases

One limitation of STD is that we need to generate and label
some data sets for training. It is a time-consuming phase for
data preparation. It would, thus, be beneficial to use these
sets to perform on other research, such as other geometric
primitives detection and semantic segmentation of large-
scale point clouds.

The miss detection cases contain two major classes as
shown in Fig.14(a). The first class is that the pipes contain
large gaping holes due to the internal occlusion. The second
class includes the cylinders existing in the elbow joints.
Both two groups of cylinders make it hard for the cylinder
ingredient detector to detect proposals since the irregular
cylinder ingredients.

The false alarm cases contain the strip structures as
shown in Fig.14(b). They could be detected in the proposals
detection phase when the slices are extracted horizontally
due to the similar appearance to the cylinder ingredients.
This will be more alleviative when the disturbance terms
are filtered taking advantage of the appearance changes
between slices.

8 CONCLUSION

In this paper, we present a novel multiple cylinder detection
framework for large-scale and complex process plants. By
using MOT, 3D cylinders detection problem is modeled as
a 2D cylinder ingredients tracking task. Extensive experi-
mental results show that our method outperforms state-of-
the-art approaches on accuracy and efficiency. Experiments
clearly demonstrate that our proposed algorithm is also
robust against the noise outliers, and occlusions. It would be
interesting to apply our idea to extracting other geometric
primitives. Besides, some other applications also can be
investigated following the framework including skeletons
extraction, semantic segmentation and surface reconstruc-
tion.
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