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Abstract Data-driven grasp planning can generate anthropopathic grasps, providing controllers with robust
and natural responses to environmental changes or morphological discrepancies. Mocap data, which is the
widely used source of motion data, can provide high-fidelity dynamic motions. However, it is challenging for
non-professionals to quickly get start and collect sufficient mocap data for grasp training. Furthermore, current
grasp planning approaches suffer from limited adaptive abilities, and thus cannot be applied to objects of
different shapes and sizes directly. In this paper, we propose the first framework, to the best of our knowledge,
for fast and easy design of grasping controller with kinematic algorithms based on monocular 3D hand pose
estimation and deep reinforcement learning, leveraging abundant and flexible videos of desired grasps. Specially,
we first get original grasping sequences through 3D hand pose estimation from given monocular video fragments.
Then, we reconstruct the motion sequences using data smoothing based on the peek clipping filter, and further
optimize them using the CMA-ES (Covariance Matrix Adaptation Evolution Strategy). Finally, we integrate
the reference motion with the adaptive grasping controller through deep reinforcement learning. Quantitative
and qualitative results demonstrate that our framework is able to generate natural and stable grasps easily from
monocular video demonstrations, added the adaptive ability to primitive objects of different shapes and sizes
in the target object library.

Keywords Virtual hand · Grasp planning · Motion generation · Deep reinforcement learning · Monocular 3D
hand pose estimation

1 Introduction

Grasp planning is widely used in the field of computer animation, robotics, virtual reality, and so on. Data-
driven grasp planning approaches synthesize new grasps from existing data, which can generate high-fidelity
natural grasps and provide real-time responses to the perturbations of environmental changes or morphological
discrepancies [29]. Mocap data is the most widely used source of motion data because of its high-fidelity dynamic
information [13]. However, collecting mocap data usually requires specialized instruments such as data glove
[13, 32], resulting in difficulties for non-technical users (e.g. teachers and students) to quickly get start and
generate desired grasps by themselves. Furthermore, since current data-driven approaches rely on grasping
datasets, their adaptive capabilities are still limited [22]. Designing an adaptive grasping controller to objects
of different types and sizes, while also guaranteeing the naturalness and stability of the motion process at the
same time, remains a challenging problem.

Existing data-driven grasp planning methods depend heavily on mocap data [18] or a large amount of prior
information in the form of contact map [3], grasping tags [15, 22], etc. Even with enough training data, these
approaches suffer from poor adaptive abilities, and thus cannot be applied to objects of different shapes and sizes
directly [11]. In contrast with these prohibitive data, a more abundant and flexible source of motion data is video
fragments, which can be easily obtained to describe the design goals of non-professionals [14]. However, there
is just one framework that employs monocular videos, and it merely focuses on the causal dependencies among
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hand interactions [12]. Thus, the proposed model can only generate schematic grasps with inferior naturalness.
With the development of video-based hand pose estimation technologies, it is fairly straightforward to make
full use of video resources to learn customized adaptive grasps. Nevertheless, existing video-based hand pose
estimation approaches typically give frame-wise processes with poor spatio-temporal consistency [35]. Besides,
motion noise always exists due to the factors such as occlusion or low video resolution [6]. Thus, the quality of
estimation results still falls behind the elaborately collected mocap data.

In this paper, to the best of our knowledge, we propose the first framework to learn an adaptive grasping con-
troller from a single monocular video fragment without the complex force closure solution process. It integrates
3D hand pose estimation and deep reinforcement learning, and focuses on the kinematics algorithm during
grasping and motion synthesis. In order to customize the desired grasping sequences from monocular videos,
firstly we employ the monocular hand pose estimation framework [35] to get the original grasping sequences.
Then, we obtain the reference motion by reconstructing the sequences and adapting them with the physics-based
hand model. To develop an adaptive grasping controller, we employ a deep reinforcement learning algorithm
combined with the reference motion. Through the offline training, the simulated hand is able to imitate the
reference motion while observing the environmental states, providing natural and stable grasps, eventually.

The contribution of this paper can be summarized as follows:

1) A monocular video-driven method for customizing smooth grasping reference motion from given RGB video
fragments. For non-technical users, they can freely record required videos from accessible monocular cameras.
Thus, the reference motion can be easily produced without prohibitive infrastructures.

2) A deep reinforcement learning-based framework for learning an adaptive grasping controller. While ensuring
the naturalness and stability of generated grasps, our controller can grasp target objects of different shapes
and sizes with kinematic algorithms. Our framework can also perform well in the case of different hand
morphologies.

We review the related works and analyze the current problems in Section 2. Then we propose the main
framework of this paper in Section 3. Section 4 and Section 5 introduce the algorithms of video-based reference
motion generation and adaptive grasp planning based on deep reinforcement learning, respectively. Furthermore,
their results are discussed in Section 6. Finally, we evaluate our method and draw the conclusion in Section 7.

2 Related Work

2.1 Data-driven grasp planning

Grasp planning has a long history in the field of computer animation, virtual reality and robotics [9]. Among
them, data-driven grasp planning approaches typically synthesize new grasps from existing data, remaining the
research hotspot in the field of grasp planning [15]. Wang et al. segmented complex objects into object elements
based on their superquadrics model, and then further proposed the optimal grasps using simulated annealing
algorithms combined with mocap grasping data [29]. Starke et al. trained the autoencoder by mocap data,
which is able to generate new grasps [27]. Kopicki et al. proposed a few-shot algorithm to demonstrate the grasp
trajectory recorded by a depth camera [18]. Liu et al. analyzed the grasps corresponding to different target
objects as the dataset with labels [22]. Combining the consistency loss function and collision loss function, they
finally established the grasping controller using deep neural network. Brahmbhatt et al. trained the grasping
controller that is stable and functional for the objects [3]. However, it required massive contact maps. Wang
et al. proposed a generative model for human-object interactions from videos [12]. Nevertheless, the generated
hand motion was supported by splines, which is interpolated between different hand pose stored with the object.

To summarize, existing data-driven approaches [3, 12, 18, 22, 27, 29] are robust for slightly environmental
perturbations, but they generally require mocap data [13, 29] or a large amount of prior information[3, 18, 22, 27].
Although few approaches can generate schematic grasps from monocular videos, the naturalness of the grasps
is relatively poor [12].

2.2 Monocular 3D hand pose estimation

In the field of technical interactive exhibitions, there are some attempts to design systems using monocular
cameras[25]. What’s more, in the field of AR and VR, high-quality hand interaction can increase user immersion
and improve teaching effectiveness[4]. For this reason, more and more attention has been paid to research of hand
pose estimation recently. Monocular 3D hand pose estimation approaches usually employ supervised learning
algorithms, combined with feature extracting and inverse kinematics techniques. Mueller et al. proposed the
CycleGAN framework, which predicts the position of joints through the given monocular videos [10]. However,
since they ignored the joint rotation, it is difficult to generate robust grasping estimation. Zhang et al. developed
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the HAMR framework, which is an end-to-end method to obtain mesh parameters of the deformable hand from
the regression model [30]. It can get smooth motion sequences and address the problem of occlusion. Nevertheless,
the accuracy of the pose estimation is relatively low because it is trained with a weakly supervised learning
algorithm. Zhou et al. made full use of multi-modal grasping data [35], solving the difficulty of insufficient data
set. But, the spatio-temporal consistency of the estimation is poor, which may cause jitter or joint accuracy
error.

In conclusion, since existing monocular 3D hand pose estimation methods are frame-wise approaches [10,
30, 35], they can not be used as templates directly because of their low spatio-temporal consistency and motion
noise.

2.3 Physics-based characters from monocular videos

Recently, we have witnessed an overwhelming growth of new approaches to deal with the tasks of controlling
physics-based characters. Some state-of-the-art approaches combined reinforcement learning algorithms with
mocap data, or further produced the mocap data from monocular videos. Based on DeepMimic [32], Peng et al.
directly obtained reference motions from monocular videos through OpenPose [5] , as well as 3D human body
mesh recovery framework HMR [17]. Their work was able to generate highly dynamic human skills from video
datasets of YouTube [31]. Similarly, Lee et al. developed a controller of the figure skating using DQN, combined
with the reference motion estimated from videos [34]. Recently, Shimada et.al presented PhysCap [26]. It is
the first framework for physically-plausible, real-time and marker-less human 3D motion capture from a single
monocular camera.

Although the research of character motion has gradually matured, the interactions between virtual hand
and target objects are less explored [2]. And, it remains a challenging work in the field of character animation.

3 Overview

Our framework covers two main steps to learn the adaptive grasping controller from given video fragments:
video-based reference motion generation stage, and adaptive grasp planning stage, as shown in Fig. 1.

In the video-based reference motion generation stage, we first extract frame-wise pose from monocular video
fragments using the monocular 3D hand pose estimation technique [35]. Then, we employ data smoothing and
trajectory optimization to reconstruct the motion trajectory [20]. Finally, we bind the sequence to the physical-
based anthropomorphic hand model. Thus, a reference motion trajectory is optimized, which is used as the
imitation template for the grasping controller.

In the adaptive grasp planning stage, the adaptive grasping controller is trained with deep reinforcement
learning in the training phase, added the target objects according to the grasping tasks. In the inference phase,
with the input target objects for inferencing, our controller trained in the training phase is able to generate
real-time grasps.

Fig. 1 Pipeline of our system.
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4 Video-based reference motion generation

In this section, we first produce the original grasping sequence by 3D hand pose estimation technique. Then
we reconstruct the motion trajectory through data smoothing and trajectory optimization process. Finally, we
bind the data to the physically-plausible anthropopathic hand model.

4.1 Original grasping sequence generation

The original rotation sequence of each hand joint is extracted by Minimal-Hand [35], which is a monocular 3D
hand pose estimation framework for predicting the hand pose in each frame of given video fragments. At the
beginning, heat map data is obtained from the input RGB images through the 2D feature extraction. Then, a
3D detector is used to obtain the position and rotation data about the joints. Finally, the original hand motion
sequence is achieved by inverse kinematic algorithms.

Since poses are predicted independently for each frame, simply imitating the trajectory tends to produce
motions that exhibit artifacts due to inconsistent predictions across adjacent frames. These artifacts can hinder
the simulated character’s ability to reproduce intended motions.

4.2 Motion reconstruction

The motion reconstruction stage reconstructs a new kinematic trajectory [31], which can reconcile the individual
predictions, as well as mitigate artifacts. After the motion reconstruction, the original motion sequence is more
amenable for imitation. At this stage, we first process the original sequence using data smoothing based on peek
clipping filter. Then, we employ CMA-ES for further trajectory optimization.

4.2.1 Data smoothing based on peek clipping filter

The peak clipping filter is employed to enhance the spatio-temporal consistency of the predictions across adjacent
frames. The filter compares the angles estimated joint by joint and frame by frame:

∆rit = rit − rit−1, (1)

where rit denotes the angle of the i-th joint at timestep t, and ∆rit denotes their angle deviation. The peak
clipping threshold γ ( γ ≥ 0) is set manually according to the speed of finger joints from video fragments. It is
used to limit the angle deviation as:

∆rit =


γ, if ∆rit ≥ γ

∆rit, if
∣∣∣∆rit∣∣∣ ≤ γ

−γ, if ∆rit ≤ −γ
. (2)

In Eq.2, the absolute angular deviation of the joint i at timestep t and t-1 satisfies
∣∣∣∆rit∣∣∣ ≤ γ , while the

excess angle will be limited, as shown in Fig.2. The operation is repeated until all joints and all frames are
processed.

Fig. 2 Schematic diagram of peek clipping filter.
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4.2.2 Trajectory optimization based on CMA-ES

Trajectory optimization [19] is employed to find a set of corrective offsets to further denoise and smooth the
trajectory processed by section 4.2.1. Our system employs CMA-ES to address the optimization problem. CMA-
ES is a sampling-based method that iteratively evaluates a number of random samples and updates the sample
distribution according to their costs. For each CMA-ES sample, our system applies the corrective offsets x to
the corresponding motion fragments and simulates two optimization windows at the same time. The objective
function is defined as:

min

{
E1 =

∑
t ‖(rt + xt)− (rt−1 + xt−1)‖

E2 =
∑
t ‖xt‖

, s.t. − χ ≤ xit ≤ χ. (3)

To smooth the rotation of the hand joints, Eq.3 is used to search for the minimum compensation value
between adjacent frames, where rt denotes the rotation vector of the 20 joints at timestep t(t ∈ ci), xt denotes
the corresponding compensation value vector at timestep t, and χ(0 ≤ χ) denotes the threshold of the corrective
offsets. In this way, we transform the motion trajectory denoising problem into an optimization problem of a
20× n compensation value matrix over the object of Eq.3.

For a long and complex reference motion sequence consisting of many control fragments, the optimization
variable set X contains a large number of parameters, making the optimization prohibitively expensive and
prone to fall into local minima. To mitigate this problem, we employ a sliding window scheme [20], which is
illustrated in Fig.3.

Fig. 3 Schematic diagram of sliding window.

Specifically, our system evenly divides an entire sequence into optimization windows ci, and then optimizes
two consecutive windows at each iteration. The first two windows are optimized together with all the corrective
offsets initialized to zero. When the optimization finishes, the first window is removed from the optimization
problem, and the second as well as the third windows are optimized together. The optimized corrective offsets
for the second window are kept as the initial solution for this new optimization problem, while the corrective
offsets for the third window are initialized to zero. This process is repeated until the entire motion sequence is
optimized. Finally, we obtain the final smooth trajectory.

4.3 Data adaptation

In this section, we design a physical-based multi-fingered hand model. To meet the need of interacting with other
objects, the agent (represented as a white hand) should strictly follow the laws of physics including properties
of mass, collider, as well as hinge joints [21]. Mass defines the precise mass of each finger joint and interactive
objects, so that they can be influenced by gravity or Newton’s law of motion. Collider provides collision volume
for rigid bodies, which promotes the interaction between objects. Hinge joint is utilized to link each finger joints.
It also provides corresponding torque and damping [8].

We define the hierarchical hand model according to the anatomical structure of the real human hand [33],
which contains 15 finger joints, 1 palm, and 20 DOFs (Degree of Freedom). The connection of joints and
coordinate system is illustrated in Fig.4(a). The mass of each finger joint is defined as 0.03kg, and the palm
is 0.5kg. In order to perceive interaction and avoid penetration, spherical collision bodies are applied to each
fingertip.
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Table 1 Joint angle constrains of physical hands.

Joint types X-axis rotation() Y -axis rotation () Z-axis rotation ()
Proximal phalanx(thumb) -30∼60 locked -50∼50
Middle phalanx(thumb) 0∼90 locked locked
Distal phalanx(thumb) 0∼90 locked locked

Proximal phalanx(others) -5∼90 locked -20∼20
Middle phalanx(others) 0∼90 locked locked
Distal phalanx(others) 0∼45 locked locked

We abstract the structure composed of joints as a rod-like hinge structure. The joint constraints are shown
in Table 1.

After the establishment of the physical hand model, we also bind the reconstructed motion sequence to the
physical hand (colored red) in the Unity3D environment, so that the reference motion is finally encapsulated.
Note that the red hand merely serves as the template for the agent (white hand) to imitate in the training
phase, as depicted in Fig.4(b).

a) Hierarchical model b) Red hand and white hand

Fig. 4 Physical hand model.

5 Adaptive grasp planning based on deep reinforcement learning

In this section, we first define the target-grasping tasks as an optimization problem. Then, we describe the
network structure of the grasping controller. Finally, we model the target-grasping task as the training goal of
reinforcement learning.

5.1 Task

We define the agent as the simulated white hand in the reinforcement learning task. According to the classifi-
cation theory in [29], the primary part of the interactive objects can be abstracted into multiple basic objects
such as spheres, cubes, and columns. Besides, every grasping motion has a target object in these elements. We
take three basic objects as examples and then add them to the target object library, as shown in Fig.5.

The inference phase refers to the stage where the off-line model works in real-time. In the inference phase, we
define the task as grasping objects of specific shapes with arbitrary sizes in the target object library. Meanwhile,
the generated grasps are required to be natural and stable. A complete process for the agent to accomplish a
series of tasks is known as an episode [36]. In each timestep of every episode, the agent (white hand) observes
the target object and the kinematic information given by the reference motion (bind to the red hand). Then,
the agent updates its state, and adjusts itself to match the object depending on the off-line policy. Finally,
it obtains feedback as rewards. The complete grasping motion sequence can be generated after repeating the
observation-interaction-feedback steps until the end of this episode.

5.2 Network

Each policy in the deep reinforcement learning is represented by a neural network that maps the given state s
and the goal g to a distribution over the action π(a | s, g) . The inputs are processed by a fully-connected layer
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a) Sphere b) Cube c) Cylinder

Fig. 5 Abstraction of the target objects.

with 199 units, which represent the observation of states from agents. Meanwhile, a linear output layer with 20
units represents the quantified actions of the agent. The structure of our network is shown in Fig.6. Moreover,
sigmoid activations are used for all hidden units. Details of states and actions will be discussed in the following
section.

Fig. 6 The structure of our neural network.

5.3 States

In our task, the state s refers to the observation of the external environment perceived by the agent. In the
neural network shown in Fig.6, the states represented by the input vector are represented as a 199 DOFs vector.

st = {pt, rt, vt,ωt, φt, λ, d
ρ
t , d

c
t} , (4)

where pt, rt, vt, and ωt describe the configuration of the hand with features consisting of the positions of
each link relative to the palm, their rotations expressed in quaternions, and their linear and angular velocities,
respectively.

Since the target pose from the reference motions varies with time, the phase variable φt is also included
in the state vector. In this representation, φt = 0 denotes the start of a motion, and φt = 1 denotes the end.
Besides, λ represents the size factor of the target object observed by the agent,

dρt =
∑
i

‖∆ρ‖it, (5)

where dρt denotes the sum of the Euclidean distance between the surfaces of fingertips and the target object at
timestep t:

dct = ‖∆c‖t, (6)

where dct represents the Euclidean distance deviation between the centroid of the fingers and the centroid of the
object at timestep t.
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5.4 Actions

The action a is the quantitative value of the agent’s behavior based on the states and the policy learned in
the training phase. Since the reference motion in Section 4 only provides kinematic information in the form of
target pose, the policy is also responsible for determining which actions should be applied at each timestep in
order to grasp the target object firmly. The output of the neural network in Fig.6 is represented as vt , which
refers to the 20 DOFs velocity vector of each joint around the X-axis or Z-axis at timestep t.

5.5 Rewards

We formulate the tasks as reward functions in reinforcement learning algorithms. Inspired by DeepMimic [32],
our reward Rt at each timestep t consists of two terms, encouraging the simulated hand to imitate the reference
motion while also grasp the target object firmly:

Rt = wIRIt + wGRGt , (7)

where RIt and RGt represent the imitation reward and adaptive penalty, respectively, wI and wG are their
respective weights. Inspired by [1], to alleviate the problem of excessive initial hand shape penalty, wG is given
by:

wG =

{
φt

φtrans
, 0 ≤ φt ≤ φtrans

1, φtrans ≤ φt ≤ 1
, (8)

where φtrans denotes the transition phase.

5.5.1 Imitation rewards

Based on reverse reinforcement learning [23], the imitation reward is designed to incentivize the simulated hand
to match the reference motion frame by frame. Compared with simply completing the task, the reward makes
it easy to avoid the self-contact of the fingers, and further makes the generated grasp more natural.

The reward with three weights wr, wv and we is defined as follows:

RIt = wrrrt + wvrvt + weret , (9)

where

rrt = e−
∑

i ‖∆p‖
i
t , (10)

rvt = e−
∑

i ‖∆v‖
i
t . (11)

The rotation reward rrt and the velocity reward rvt encourage the virtual hand to match the joint orientation of
the reference motion at each timestep t. Specially, ∆p and ∆v represent the orientation and velocity deviation
between the simulated hand and the reference motion, respectively. It is computed as the deviation between the
joint orientation quaternions of the simulated hand and those of the reference motion.

Similarly, the end-effector reward ret encourages the fingertips to match the positions from the reference
motion at each timestep t. Since the human hand is a hierarchical structure with the parent-child relationship,
the closer to the fingertips, the more easily the positions of the finger joints will deviate from the reference
motion. The end-effector reward is defined as:

ret = e−
∑

i |∆ρ|
i
t , (12)

where ∆ρ specifies the position deviation between the fingertips and those from the reference motion at timestep
t, with ρ ∈ pt .

5.5.2 Adaptive penalties

In order to stably grasp target objects of different shapes and sizes, the adaptive penalty is involved by penalizing
the agent for failing to meet task-specific objectives. Note that stiff imitation of reference motion sequences may
generate natural grasps, but they can hardly grasp any target stably. We define the adaptive penalty as:

RGt = wρrρt + wnrnt + wcrct , (13)

where wρ, wn and wc are weight coefficients.
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The end-effector distance penalty rρt [7] is computed from the distance between the fingertips and the target
object at timestep t. It incentivizes the fingertips to contact the target object as soon as possible instead of
stiffly imitating the reference motion. For the fingertip i of each finger, we formulate:

rρt =

{
− ‖∆ρ‖it

max(‖∆ρ‖) , if the fingertip contacts

0, if the fingertip does not contact
. (14)

rnt denotes the non-contact penalty of the fingertips at timestep t. In order to ensure contact between the
fingertips and the object surface, for each fingertip, the penalty is given by:

rnt =

{
0, if φt ≤ 0.6
−0.2, if 0.6 ≤ φt and no fingertip contacts

. (15)

rct is the centroid penalty between the fingertips and the target object at timestep t. The presence of end-
effector distance penalty and non-contact penalty merely solve the problem of whether the object is in contact,
but the distribution of touch points on the object surface still needs to be optimized. Inspired by [24], we believe
that the shorter distance between the object’s center of mass and the centroid of the target object, the less
effect of inertial and gravitational forces will be on the grasps. In other words, the grasps are more stable. The
centroid penalty is given by:

rct = − ‖∆c‖t
max(‖∆c‖) . (16)

We formulate the centroid of the fingers’ position at timestep t as:

ct =

∑
i

(
miρit

)
∑
im

i
, (17)

where mi represents the mass of the i-th fingertip.

6 Experiments and results

In this section, we present the results of reference motion and adaptive grasping controller, respectively. Note
that, users are more concerned about animation effects rather than physical properties in some scenarios, such
as augmented reality (AR) and virtual reality (VR). To make the entire behavior generation process more
lightweight, in this paper, we focus on the kinematics algorithm and the motion quality in the grasping process.
And, we omit the complex force closure solution when fingers interact with target objects. Therefore, it is
difficult to conduct direct performance comparison between our method and existing grasping methods based
on robotic arms [3, 18] or dynamics [9, 21, 27].

In terms of hardware, our experiment involves a server equipped with an Intel i7-9700KF processor, a
NVIDIA GTX 2070 graphics card, as well as a 16GB RAM. In terms of software, the task environment is built
based on Unity3D game engine with ML-Agents [16] plug-in.

6.1 Generation of the reference motion

6.1.1 Motion reconstruction

We take the motion of ”cylinder-grasping” sequence (Fig.8(a)) as an example, and the initial trajectories from
Minimal-Hand are shown as the gray lines in Fig.7. In the filtering stage, we set the peak clipping thresholds
γtx = 22, γtz = 14, γox= 23, γoz= 21. As is depicted in Eq.2, they represent the angle threshold of thumb’s
X-axis, thumb’s Z-axis, other fingers’ X-axis, other fingers’ Z-axis, respectively. The filtering results are shown
as green lines. In the trajectory optimization stage of Eq.3, we divide the processed sequence into 16 windows,
and then set the step parameter σ=0.3 and the compensation threshold χ =7 for the CMA-ES optimization.
The results are reported as the cyan lines. The reference motion bound to the virtual hand (red) needs to meet
the joint constraints defined in Section 4.3, and the final results are given by the blue lines in Fig.7 with stars.

”Average” in the graph refers to the average Euler rotation of the three DOFs for each finger’s joints.
According to the results, angle noise in original trajectories can be effectively suppressed, making the final
reference motion more amenable for imitation. In Fig.7(j), the original estimation of the pinky’s Z-axis exceeds
the bodily constraints. It may be caused by the occlusion of other fingers in the video, resulting in the error
estimated by Minimal-Hand.
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(a) X-axis rotation of thumb (average) (b) Z-axis rotation of thumb

(c) X-axis rotation of index (average) (d) Z-axis rotation of index

(e) X-axis rotation of middle (average) (f) Z-axis rotation of middle

(g) X-axis rotation of ring (average) (h) Z-axis rotation of ring

(i) X-axis rotation of pinky (average) (j) Z-axis rotation of pinky

Fig. 7 Joint angles of fingers over time.
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6.1.2 Data adaption

The template of ”cylinder-grasping” motion is demonstrated in Fig.8(a). The spatial position of each finger joint
that changes over time composes the trajectories of the motion sequences. Besides, the initial estimation from
Minimal-Hand is shown in Fig.8(b)). After the motion reconstruction stage, the bvh data of human right hand
are shown in Fig.8(c). The final results of the reference motion bound to the virtual hand (red) are demonstrated
in Fig.8(d).

The qualitative results show that the original estimation trajectory from Minimal-Hand may produce un-
natural pose with joint misalignment or jitter, as shown in Fig.8(b). They can be effectively alleviated in the
motion reconstruction stage, and will eventually disappear in the reference motion.

(a) Cylinder-grasping motion template

(b) Estimation from Minimal-Hand

(c) Bvh data after the motion reconstruction

(d) Reference motion bound to the virtual hand (red)

Fig. 8 Adaption of reference motion.

6.2 Generation of adaptive grasps

We analyze the qualitatively and quantitatively results from three different experiments: ablation, adaption
and retarget. In the training phase, we set the time scale of 10 and parallel training of 64 agents, combined
with CUDA 10.0 and cuDNN7.4 for GPU-based acceleration. We define the reward weights wr=0.4, wv=0.2,
we=0.4, wρ=0.25, wn=0.25, wc=0.5, and the phase variable φtrans =0.4.

6.2.1 Ablation

To evaluate the impact of our designed controller, we compare our full policy against alternative training schemes
that disable some of the components. Comparisons include imitation-only policy and adaptation-only policy, as
well as DeepMimic policy and imitation-adaptation policy.

Fig.9 compares the learning curves with different policies. ”Imitation-only” policy is the policy with the
imitation weight wI of 1 and the adaptive weight wG of 0 in Eq.7. Since no penalty is involved in this case, the
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initial value of the reward is 0, and the curve has a limited upside. ”Adaption-only” policy denotes the situation
where the imitation weight wI is 0 and wG is 1. Since there are just penalties in this case, the theoretical
maximum reward is 0. ”DeepMimic” policy refers to the policy of [32], with wI of 1 and wG of 1. Finally, our
”Imitation+Adaptation” policy refers to the case where wI is 1, and wG satisfies Eq.8. Compared with the
”DeepMimic” policy, our policy has faster convergence rate. Since the dynamic weight in Eq.7 mitigates the
effect of excessive adaptive penalty at the start of each episode, our strategy is more likely to avoid local optimal
solutions.

Fig. 9 Learning curves of policies in the training phase.

Snapshots of grasps with three policies are available in Fig.10. The little blue sphere in the picture represents
the centroid of the fingertips, and the little red sphere represents the center of mass of the target object. Since
the grasps of ”DeepMimic” policy and our ”Imitation+Adaptive” policy are little distinguishable, the analysis
of the ”DeepMimic” policy is omitted in the following part. Table 2 also summarizes the performance of the
policies.

(a) ”Imitation-only” policy

(b) ”Adaption-only” policy

(c) ”Imitation + adaption” policy

Fig. 10 Grasps with different policies.

We involve sequence similarity [28] between the generated grasp motion and the reference motion to quantize
the naturalness of the results:

Sim(X,Y ) =
l

max(n,m)
, (18)
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Table 2 Quantitative results of the ablation experiment.

Policy name Sim(X, Y ) η
”Imitation-only” policy 88.01% 8.53%
”Adaption-only” policy 74.18% 1.29%

”Imitation+adaption” policy 85.97% 1.52%

where X = {x1, x2, ..., xn} denotes the grasping sequence produced by the simulated hand (white), Y =
{y1, y2, ..., yn} denotes the reference motion sequence from the video (red), n and m denote the respective
lengths of these sequences, respectively, and l represents the common subsequence length. We define dmin=0.5
as the threshold, then the common subsequence specifies the sequence whose least square distance in the sequence
X and Y are less than dmin. The relative value of the centroid deviation is used to quantize the stability of the
generated grasps. We formulate the centroid deviation ratio η as:

η =
‖∆c‖t′
λ

, (19)

where t′ refers to the timestep when all the fingers touch the object surface at the same time. The results
are the average value of 10 consecutive episodes. In the following experiments, we will continue to employ the
quantitative methods above.

The agent will struggle to synchronize the reference motion frame by frame in the case of the ”Imitating-
only” policy. Qualitatively, the motions generated by the policy closely resemble the reference fragments, but
the centroid deviation ratio which quantizes grasping stability is inferior, and fingertips often fail to touch the
object surface, as shown in Fig.10(a). The policy of ”Adaption-only” appears to grasp more firmly, but the
agent never learns to act like a real human hand, with artifacts such as self-contact of the fingers, as shown in
Fig.10(b). Our ”Imitation + Adaptive” policy is proven to be the best control policy of the simulated hand,
and the naturalness and stability quantitative values are relatively high, as shown in Fig.10(c).

6.2.2 Adaptive abilities

In order to evaluate the adaptive ability of our policy, we first choose different objects in the target object
library to test the shape adaptive ability of our policy. Then we change the size factor λ to test the size adaptive
ability of our policy.

6.2.2.1 Shape adaptive ability
In this section, the trained policy of grasping spheres is employed in the tasks of grasping cubes, cylinders and
spheres, respectively. Besides, the adaptive ability to grasp objects of different shapes is discussed. The grasps
are shown in Fig.11, and the performance statistics are shown in Table 3.

Table 3 Quantitative results of the shape adaption task.

Task name Sim(X, Y ) η
Cube-grasping task 83.89% 1.74%

Cylinder-grasping task 82.91% 1.72%
Sphere-grasping task 86.24% 1.52%

The results show that our policy can generate natural and stable grasps for target objects of different shapes
in the target object library. Meanwhile, good adaptive ability makes our policy insensitive to hyper-parameters.
Thus, the defined hyper-parameters can be well generalized to multiple motions.

6.2.2.2 Size adaptive ability

In this section, we change the size factor of the target object to analyze the adaptive ability for grasping
objects of specific shapes and different sizes. Specially, the size factors λ are slightly outside the range of those in
the training phase: in the training phase, the size factor of the training object is randomly sampled of λ ∈ [0.5, 1];
in the inference phase, we manually set the size factors to 0.3, 1.2 and 0.75, respectively.

The grasps for the different sizes of spheres are shown in Fig.12, and the quantitative results are available
in Table 4.

The results indicate that our policy is able to generate stable grasps for objects of moderate size (λ =0.75),
as well as larger size (λ =1.2) and smaller size (λ =0.3). Since the grasps generated in extreme cases are quite
different from the initial reference motion, the Sim(X,Y ) is relatively low and the η is high.



14 Yihe Wu 1 . Zhenning Zhang 2 . Dong Qiu 1 . Weiqing Li 2 . Zhiyong Su 1, �

(a) Cube-grasping task

(b) Cylinder -grasping task

(c) Sphere-grasping task

Fig. 11 Grasps of target objects of different shapes.

(a) Size factors λ= 0.3

(b) Size factors λ= 1.2

(c) Size factors λ= 0.75

Fig. 12 Grasps of target objects of different sizes.

Table 4 Quantitative results of the size adaption task.

λ Sim(X, Y ) η
0.3 76.10% 7.32%
1.2 69.24% 6.85%
0.75 87.21% 1.53%
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6.2.3 Retargeting

One of the advantages of physics-based character animation is its ability to synthesize behaviors for novel
situations that are not present in the original data. To evaluate our framework’s robustness to these discrepancies,
we directly copy the local joint rotations from the normal hand (with the finger size factor of 1) to the special-
topologies hand model (”long fingers” hand with the size factor of 1.3, ”short fingers” hand with the size factor
of 0.7, as well as ”irregular fingers” hand with the size factor of 0.7 and 1.3) without any further modification.

The grasps generated by the three virtual hand models are shown in Fig.13. Despite the starkly different
hand morphologies, our policy is also able to perform well with slight centroid deviation.

(a) ”Long fingers” hand

(b) ”Short fingers” hand

(c) ”Irregular fingers” hand

Fig. 13 Grasps with different hand topologies.

7 Conclusion

We present a novel video-based adaptive grasp planning framework in this paper. Our framework firstly gets
reference motion using monocular hand pose estimation, and then obtains the adaptive ability from deep re-
inforcement learning controller. Our framework can generate natural and stable grasps to different primitive
objects. Moreover, users can conveniently customize generic grasps, which can be employed in action demon-
strations of virtual human or other interactive scenarios.

Although the experiments illustrate the flexibility and stability of our approach, there are still limitations
to be addressed in our future work.

(1) Extend the adaptive capabilities of motion fragments to the entire interactive process. In this work,
we clip the grasping sequences, and we can only perform adaptive grasping generalization on the given action
primitives. Future work can consider recording hand motion sequences during the whole demonstration process,
further exploiting the advantages of inverse reinforcement learning to perform complex interactions.

(2) Apply high-level semantic understanding on the target objects. Since our approach merely considers
low-level geometric features, object features such as holes in a bowling ball that are intentionally designed for
grasping can’t be captured. The combining of the high-dimensional semantic information with our controller
will be an interesting direction, so the automatic identification and grasps can be expected.
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