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Abstract

Over the past decade, we have witnessed an enormous amount of research effort dedi-

cated to the design of point cloud denoising techniques. In this article, we first provide

a comprehensive survey on state-of-the-art denoising solutions, which are mainly cat-

egorized into three classes: filter-based, optimization-based, and deep learning-based

techniques. Methods of each class are analyzed and discussed in detail. This is done

using a benchmark on different denoising models, taking into account different aspects

of denoising challenges. We also review two kinds of quality assessment methods de-

signed for evaluating denoising quality. A comprehensive comparison is performed to

cover several popular or state-of-the-art methods, together with insightful observations.

Finally, we discuss open challenges and future research directions in identifying new

point cloud denoising strategies.
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1. Introduction

Point cloud, as with meshes and RGB-D images, is one of the most popular rep-

resentations for 3D objects and environments. A point cloud is a large collection of

individual, unstructured 3D points in the three-dimensional coordinate system that ap-

proximate the geometry of 3D data. These points are always located on the external5

∗Corresponding author.
Email address: su@njust.edu.cn (Zhiyong Su)

Preprint submitted to Graphical Models December 25, 2021



Figure 1: Part of a chemical plant and its scanned point clouds.

surfaces of visible objects. Theoretically, a pint cloud Q with n points can be defined

as Q = {qi, i = 1, . . . , n}, where each point qi ∈ R3 in the 3D space is associated with

different attributes, such as position (xi, yi, zi) and color (ri, gi, bi).

Recently, the rapid advancement of geometric sensing techniques, such as laser

scanning, time-of-flight range finding, structural lighting, and stereo vision, have wit-10

nessed the wide use of 3D sensors in different areas, such as 3D reconstruction [1],

autonomous driving [2], robotics [3], and augmented reality [4]. Figure 1 gives an ex-

ample of the point cloud scanned from part of a chemical plant by a Trimble GX200

scanner. Point clouds acquired with these sensors, however, inevitably suffer from dif-

ferent levels of noise and outliers caused by measurement errors [5]. A plethora of15

noise sources can affect point clouds, such as the acquisition device, limitations of sen-

sors, and the lighting or reflective nature of the surface [6]. More information about

the cause of noises can be found in the survey by Chen et al. [5]. This noise not

only degrades the quality of point clouds, but also hinders downstream geometry pro-

cessing applications. Therefore, denoising techniques have become a critical step for20

improving the final quality of point clouds while preserving as many essential geomet-

ric features as possible.

1.1. Definition

Point cloud denoising, which is a fundamental and vital research area in com-

puter graphics and computer vision, aims to recover the ground-truth point cloud by25

removing unwanted noises from a given noisy input. A noisy point cloud, denoted by
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P = {pi, i = 1, . . . , n}, can roughly be approximated as:

pi = qi + ei, pi, qi, ei ∈ R3, (1)

where qi denotes a point from the ground-truth point cloud Q, and ei denotes measure-

ment noises at the location qi. The denoising process can be formulated as

q′i = F (pi) = F (qi + ei), (2)

where q′i denotes an approximation of qi, and the function F (· ) stands for a general30

denoising method. The majority of existing point cloud denoising methods concentrate

on removing different kinds of synthetic noises [7, 8, 9, 10, 11, 12, 13], especially the

additive white Gaussian noise with zero mean and standard deviation σ. However,

synthetic noises with a simple distribution, such as Gaussian, are difficult to mimic the

complex real-world noise [14]. Therefore, increasing attention has been paid to remove35

real-world noises recently [15, 16, 17, 18], which are more complex than synthetic

noises.

1.2. Contribution

This survey aims to build a starting point for researchers new to the topic, act as

a reference guide for the community around point cloud denoising, and to introduce40

exciting open research questions. In the literature, few surveys of point cloud denoising

are available, such as [5, 6]. However, they mainly discussed classical methods that

were proposed at least five years ago. In recent years, numerous new methods and

trends have emerged, especially in the field of deep learning for point cloud denoising

[7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19]. Our survey strives to provide a comprehensive45

and up-to-date overview of the point cloud denoising methods proposed in the past five

years, in particular the deep learning-based methods. A classification of the main point

cloud denoising methods discussed in this survey is illustrated in Figure 2. However, It

is worth noting that it is impossible to discuss all the published papers in this field. We

refer our readers to previous surveys [5, 6] for details about the point cloud denoising50

methods proposed five years ago. Besides, the outlier detection problem is also not

covered in this survey. Readers can refer to [20, 21] for a comprehensive survey of the

outlier detection.
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Figure 2: A taxonomy of point cloud denoising methods.

Compared with existing surveys, the major contributions of this work can be sum-

marized as follows:55

1) As opposed to existing reviews [5, 6], this paper focuses on reviewing point

cloud denoising algorithms proposed during the last five years.

2) To the best of our knowledge, this is the first survey to comprehensively cover

deep learning-based point cloud denoising methods as well as quality assessment

approaches for denoised point clouds.60

3) Comprehensive comparisons of several popular or state-of-the-art methods on

selected noisy point clouds are provided, with summaries and insightful discus-

sions being presented.

1.3. Organization

The structure of this paper is as follows. Section 2 reviews filter-based methods.65

Section 3 presents a review of optimization-based approaches. Deep-learning-based

methods are discussed in Section 4. Section 5 provides a survey of existing quality

assessment techniques for denoised point cloud. Section 6 compares some popular

and state-of-the-art point cloud denoising algorithms. Section 7 discusses some open

challenges and future directions. Finally, Section 8 concludes the paper.70
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2. Filter-based methods

Filter-based denoising methods, which are mainly inherited from ideas of image

processing, usually assume that the noise is high frequency, and design filters that

operate on point positions or point normals. These methods can be roughly divided

into bilateral filtering-based, guided filtering-based, and graph-based methods.75

2.1. Bilateral filtering-based methods

Bilateral filtering, originally designed for the image denoising by Tomasi et al. [22],

is a nonlinear technique to smooth an image while preserving strong edges. The key

idea is that it considers values of neighbors that are close in both position and pixel

value.The bilateral filtering for an image I(i) at the pixel i = (x, y) can be defined as80

follows:

I′(i) =

∑
j∈N(i) wc(‖ j − i‖)ws(|I(i) − I( j)|)I( j)∑

j∈N(i) wc(‖ j − i‖)ws(|I(i) − I( j)|)
, (3)

where N(i) denotes the neighborhood of i, wc(x) = e−x2/2σ2
c is a spatial smoothing

function with standard deviation σc, and ws(x) = e−x2/2σ2
s is an intensity smoothing

function with standard deviation σs. This concept has been extended and widely used

for denoising point clouds [5, 6].85

Bilateral filtering-based point cloud denoising methods apply the bilateral filter di-

rectly to point clouds based on point position, point normal, point color, etc [23, 24].

Digne et al. [23] extended the bilateral filtering on meshes introduced by Fleishman et

al. [25]to point clouds by taking into account both spatial and normal distances. The

denoised position p
′

i of pi is updated by90

p
′

i = pi + δi · ni, (4)

where ni is the normal of pi, and δi is a weight coefficient defined as:

δi =

∑
pi j∈Nr(pi)

wd

(
‖ vi j ‖

)
wn

(
|〈ni, vi j〉|

)
〈ni, vi j〉∑

pi j∈Nr(pi)
wd

(
‖ vi j ‖

)
wn

(
|〈ni, vi j〉|

) , (5)

where vi j = pi j − pi,Nr(pi) = {pi j ∈ P| ‖ pi j − pi ‖< r} is the neighbors of pi defined in

a r-ball (neighbors within radius) centered at pi, wd(x) = e−x2/2σ2
d and wn(x) = e−x2/2σ2

n
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Table 1: Summary of bilateral filtering-based point cloud denoising methods

Method Weighting function Comments

Digne et al. (2017) [23] Point position, point normal Parallel implementation; trade-off

between speed and quality

Zhang et al. (2019) [24] Point position, point normal, point

color

Preserves sharp feature to some

extent; removes small-scale noise

are two 1D Gaussian functions with chosen variance σd and σn respectively, and 〈, 〉

is the inner product of two vectors. In order to improve the computation efficiency,95

they implemented the proposed scheme through the OpenMP [26] API which supports

multi-platform shared-memory parallel programming. Thus, it can balance the pro-

cessing speed and denoising quality.

Besides point position and point normal, Zhang et al. [24] also considered point

color and designed a bilateral filter to denoise point clouds collected by Kinect for100

Windows v2. Let L(pi) be the grayscale intensity value, the key of their bilateral filter

is the improved weight coefficient δi in Eq.(5):

δi =

∑
pi j∈Nr(pi)

wd

(
‖ vi j ‖, |di j|

)
wn

(
|〈ni, vi j〉|

)
〈ni, vi j〉∑

pi j∈Nr(pi)
wd

(
‖ vi j ‖, |di j|

)
wn

(
|〈ni, vi j〉|

) , (6)

where di j = |L(pi j) − L(pi)| is the gray-scale difference between point pi and its neigh-

boring point pi j, wd(x, y) = e−(x2+y2)/2σ2
d is a standard 2D Gaussian function.

Table 1 summarizes the weighting function used in the bilateral filter of recent105

bilateral filtering-based approaches introduced in this section. The pros and cons of

different algorithms are also listed. Overall, the process of bilateral filtering-based

methods is simple and non-iterative. They consider spatial and normal closeness, as

well as grey level similarity in the denoising process. Though these methods are able

to preserve edges, they are not good at precise noise correction near sharp edges or110

corners.

2.2. Guided filtering-based methods

The guided filter, which was first proposed by He et al. [27], is an explicit image

filter, and can perform as an edge-preserving smoothing operator. The key assumption
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is that the output image is a local linear model between the guidance image Ig and the115

filter output Io. Given a guidance image Ig, the filtering output Io of an input image Ii

is defined as a linear transform of Ig in a window ωi centered at the pixel i:

Io( j) = aiIg( j) + bi, ∀ j ∈ ωi (7)

where ai and bi are linear coefficients assumed to be constant in ωi.

Guided filtering-based point cloud denoising methods seek to transfer important

structural details contained in the guidance point cloud to the target point cloud. The120

most popular guidance information is the target point cloud itself [28] or denoised

outputs from previous filtering iterations [29]. According to the type of guidance in-

formation, these methods can further be divided into two categories: position-guided

[28] and normal-guided methods [29, 30, 31].

2.2.1. Position-guided methods125

This kind of method employs the point position as a simple and direct guidance

information. In [28], Han et al. extended the guided image filtering technique [27] to

point clouds, and proposed a point position guided filtering approach. They employed

the input point cloud itself as the guidance point cloud, called self-guided point cloud

filtering. For each neighboring point pi j ∈ N(pi) of pi, the filtered position p
′

i j is130

defined as:

p
′

i j = ai pi j + bi, (8)

where ai and bi are coefficients of the linear model respectively, which are computed

by minimizing the following function:

J (ai, bi) =
∑

pi j∈N(pi)

((
ai pi j + bi − pi j

)2
+ εa2

i

)
, (9)

where ε is a controlling parameter. The above Eq. (9) can be solved by:

ai =

1
|N(pi)|

∑
pi j · pi j − pi · pi(

1
|N(pi)|

∑
pi j · pi j − pi · pi

)
+ ε

, (10)

135

bi = pi − ai pi, (11)

where pi is the centroid of N(pi). However, this method cannot recover sharp features

such as the corner, since only the position information of a point is considered.
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2.2.2. Normal-guided methods

Besides the point position, the majority of recent guided filtering-based methods

also employ the point normal as guidance signals. This kind of method usually esti-140

mates a single normal or multi normals for each point.These normals are then itera-

tively filtered by using the normal field updated in the previous iteration as guidance.

Point positions are finally updated to match the estimated normals.

Single normal-based methods. Han et al. proposed an iterative guidance normal

filter for point cloud denoising [31], which was inspired by the iterative idea of rolling145

guidance filter [35] for image denoising:

nk+1
i =

1
Ki

∑
pi j∈N(pi)

wd

(∥∥∥pi j − pi

∥∥∥) wn

(∥∥∥nk
i − nk

j

∥∥∥) · nk
j, (12)

where

Kk
i =

∑
pi j∈N(pi)

wd

(∥∥∥pi j − pi

∥∥∥) wn

(∥∥∥nk
i − nk

j

∥∥∥) . (13)

The initial normal n0
i of each point pi is estimated by using the Principal Components

Analysis (PCA) [36]. In the kth iteration, nk+1
i is computed in a bilateral filtering form

with respect to the normal field {nk
i } in the previous iteration. The Eq.(12) uses the nor-150

mal field as guidance to filter the newly adjusted normal field in the previous iteration.

After obtaining filtered normals, each point is adjusted to match its estimated normal

by extending the iterative point updating scheme proposed by Sun et al. [37]. How-

ever, the isotropic point updating process treats each point indiscriminately which may

smooth sharp regions, such as corners or edges. To address the above problem, Ya-155

dav et al. [29] introduced an anisotropic point cloud denoising algorithm. In the point

normal filtering stage, they defined a point-based Normal Voting Tensor (NVT) based

on the variation of point normals. Noise and sharp features are decoupled using the

spectral analysis of the point-based NVT and noise components are suppressed using

Binary Eigenvalues Optimization (BEO). In the point updating stage, they classified all160

points into corners, edges, and planar points using the spectral analysis of a weighted

anisotropic covariance matrix. Restricted quadratic error metrics, which are different

for different kinds of feature points, are introduced to update point positions by utiliz-

ing distance-based constraints. These stages are iteratively applied to the input point
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cloud to get the final denoised output. Since single normals at feature points are am-165

biguous and undefinable, single normal-based approaches may lead to cross artifacts at

sharp features.

Multi-normal-guided methods. To preserve sharp features better, the multi-normal

strategy is widely adopted by assigning feature points with multiple normals accord-

ing to their feature type [30, 32, 33]. In [30], Zheng et al. extended the guidance170

normal filter for mesh normal smoothing [38] to point clouds via a multi-normal strat-

egy. The multi-normals of each feature point are estimated by partitioning its k-NN

into piecewise smooth patches with each smooth patch corresponding to one normal.

They evaluated a guided normal for each point normal by computing the average nor-

mal of its most consistent patch. Then, they applied the guided filter to the normal175

field to get a piecewise smooth one. Based on the similar idea of [30], Liu et al. [32]

also adopted the multi-normal strategy and presented a feature-preserving framework

to recover a noise-free point cloud. They developed an anisotropic second-order reg-

ularization method to restore the point normal field from the noisy input. A bi-tensor

voting scheme combining the normal and point tensor voting is then introduced to de-180

tect feature points. Multiple normals at each feature point are estimated by using a

simple yet effective Random Sample Consensus (RANSAC)-based algorithm [39].

While most point cloud denoising methods try to remove unwanted noise on the

premise of preserving geometric features, on the contrary, Zheng et al. [33] adopted a

multi-normal strategy to remove different scales of geometric features from noisy point185

clouds. They extended the mesh rolling guidance normal filter [35, 38] to process the

normal field on the point cloud. To overcome the normal discontinuity along sharp

features, they adopted the multi-normal strategy [30] during point position updating.

Their approach is robust in removing small-scale geometric features. Therefore, Sun et

al. [34] exploited the rolling guidance normal filter [33] to suppress multi-scale textures190

while preserving prominent structures for point clouds with rich textures. However, this

method may filter several detailed features with important semantic information.

A summary of guided filtering-based approaches is presented in Table 2, with the

emphasis on guidance information, features, advantages and disadvantages. Overall,

the guidance information can either be static or dynamic. Static guidance (e.g., the195
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Table 2: Summary of guided filtering-based point cloud denoising methods

Method Guidance Features Comments

Han et al. (2018) [28] Point position Self-guided denoising Does not recover sharp fea-

tures

Zheng et al. (2017) [30] Point position; point

normal

Multi-normal guided nor-

mal filter

Needs fine parameters tuning;

does not deal with different

scales of features

Han et al. (2018) [31] Point position; point

normal

An iterative guidance nor-

mal filter

Time-consuming; cannot pre-

serve sharp features

Yadav et al. (2018) [29] Point position; point

normal

Vertex-based normal vot-

ing tensor; binary eigen-

values optimization based

normal filter

Preserves sharp edges and cor-

ners

Liu et al. (2020) [32] Point position; point

normal

Anisotropic second or-

der normal filter; bi-

tensor voting based fea-

ture points detection

Preserves different levels of

geometric features

Zheng et al. (2018) [33] Point position; point

normal

Rolling guidance normal

filte

Prevents large-scale sharp

structures from severe distor-

tion

Sun et al. (2019) [34] Point position; point

normal

Denoising point clouds

with rich textures; rolling

guidance normal filter

Limited efficiency; filters sev-

eral detailed features with im-

portant semantic information

point cloud itself [28]) provides direct and intuitive control over the denoising process.

However, the static guidance should be specified beforehand, and remains static during

the denoising processing. Dynamic guidance (e.g., point normals [29, 30, 31, 32, 33])

is automatically updated according to the previous iterate, but can be less robust when

there are outliers or noises in the input point cloud.200

2.3. Graph-based methods

Graph-based point cloud denoising methods first interpret the input point cloud as

a graph signal, and then perform denoising via chosen graph filters. There are several

clear connections between graph features and point cloud characteristics. For example,

the flatness of surfaces in point clouds can be described by the smoothness over a graph.205

Due to the graph’s ability to capture underlying geometric structures of point clouds,
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Figure 3: An illustration of graph and hypergraph. (a) A graph G = {V,E} with V = {v1, v2, v3, v4, v5}

and E = {e1,5, e1,3, e2,3, e2,4, e2,5, e3,4}. (b) A hypergraph H = {V,E} with V = {v1, v2, v3, v4, v5} and set of

hyperedges E = {e1, e2, e3}

recently, the graph signal processing technique has shown great success in point cloud

processing [40].

A weighted graph G = {V,E,W} is often defined by two sets: a node set V of

cardinality |V| = n and an edge set E, as illustrated in Figure 3(a). Nodes in a graph210

represent entities (e.g., people in a social network or points in a point cloud), whereas

edges represent relationships between those entities. W is a weighted adjacency matrix.

To reflect the degree of pairwise similarity between node vi and node v j, a weight

wi, j ∈ W is often assigned to each edge ei, j ∈ E. According to the graph construction

approach, current graph-based methods can be divided into point-based, patch-based215

and hypergraph-based methods.

2.3.1. Point-based graph

These methods define each point as a node, and each node is connected through

edges to its k nearest neighbors (k-NN). Duan et al. constructed a k-NN graph based

on the Euclidean distance between points, whose nodes are points and edges are prox-220

imities of points, to capture local and global geometric structures of the input point

cloud [41]. Instead of directly smoothing positions or normals of points, they pro-

posed a weighted multi-projection (WMP) denoising algorithm. A tangent plane was

estimated at each point to locally approximate the underlying manifold based on the

graph structure. Then, they projected each point to its neighbors’ tangent planes, and225
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averaged the multiple projections to obtain the denoised point. Besides employing the

geometry information in the Euclidean space to build the graph, Irfan et al. [42] took

advantage of the correlation between geometry and color attribute of a point cloud, and

generated a suitable k-NN graph based on both color similarity and geometry prox-

imity. They applied a graph-based convex optimization to obtain the denoised point230

cloud.

2.3.2. Patch-based graph

These methods build the graph based on surface patches of point clouds where

each patch is defined as a node, and employ the Graph Laplacian Regularizer (GLR)

to denoise point clouds [43, 44, 45]. Let D be the diagonal degree matrix of G, where235

di,i =
∑n

j=1 wi, j. Given W and D, the combinatorial graph Laplacian matrix L [46] can

be written as L = D −W. The GLR [46] is defined as:

v>Lv =

n∑
i=1

n∑
j=1

wi, j

(
vi − v j

)2
, (14)

where v ∈ RN is a graph signal defined on the graph G, vi and v j are a pair of connected

nodes. Consider an input noisy point cloud P as a graph signal defined on the graph

G, where pi is a scalar value assigned to node vi. It has been shown in [43, 44, 45]240

that minimizing the GLR
∑n

i=1
∑n

j=1 wi, j

(
pi − p j

)2
iteratively can promote piecewise

smoothness in the reconstructed graph signal P [43, 44, 45].

Hu et al. [43] divided the input point cloud into a set of overlapping patches, which

are aligned via translation so each patch has its center at the origin. A k-NN graph was

then built over each pair of adjacent patches by using the k-NN algorithm to search the245

nearest patches of each patch as the neighbors based on the Euclidean distance between

patch centers. After that, they formulated the problem of point cloud denoising as min-

imization of GLR using the Mahalanobis distance matrix as a variable. Interpreting

the above Mahalanobis distance matrix as a graph Laplacian, they developed a fea-

ture graph learning scheme to determine edge weights, where they employed positions250

and surface normals as relevant features for each point. An alternating algorithm was

introduced to efficiently solve the formulated problem by alternately optimizing the

denoised point cloud and the Mahalanobis distance matrix. Similar to [43], Zeng et al.
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[44] generated surface patches using the same method as in [43]. They constructed a

patch graph based on extracted surface patches by developing a discrete patch distance255

measure to quantify the similarity between two same-sized surface patches. Assum-

ing that surface patches in the point cloud lie on a manifold of low dimension, they

extended a previously proposed low-dimensional manifold model (LDMM) [47] for

image patches to surface patches in the point cloud. To efficiently adopt the LDMM to

discrete point cloud patches, they approximated the computation of the patch-manifold260

dimension defined in continuous domain with a discrete patch-based graph Laplacian

regularizer. Finally, they exploited the surface self-similarity characteristic and simul-

taneously denoised similar patches by minimizing the manifold dimension. However,

it focuses on removing a high level of noise but it dose not preserve the sharp struc-

tures. Different from [43] and [44], Dinesh et al. [45] divided the point cloud into two265

disjoint node sets (red and blue), and constructed a bipartite graph approximation of

the original k-NN graph G by simplifying the method in [48]. They developed a new

GLR term called signal-dependent feature graph Laplacian regularizer (SDFGLR) to

optimize the red and blue nodes’ coordinates alternately.

2.3.3. Hypergraph270

Except for the traditional graph [41, 43, 44, 45], the hypergraph is also introduced

to denoise noisy point clouds. The problem of denoising a signal on a hypergraph is

formulated as a convex minimization problem with the constraints that denoised signals

should be smooth over the hypergraph [40].

A hypergraph H = {V,E} consists of a set of nodes V and a set of hyperedges275

E. In a traditional graph, each edge can only connect two nodes, constraining graph-

based models to describe only pairwise relationships. However, the hypergraph is a

high-dimensional graph model, in which each hyperedge can connect more than two

nodes, as illustrated in Figure 3(b). Hence, it can characterize the multilateral relation-

ship among several related nodes. The hypergraph signal processing is a tensor-based280

framework [49]. A tensor is a high-dimensional generalization of matrix, which can

be interpreted as multi-dimensional arrays. The tensor outer product between an mth-

order tensor U ∈ RI1×...×Im with entries ui1···im and an nth-order tensor V ∈ RJ1×...×Jn

13



with entries v j1··· jn can be defined as O = U ◦ V, where O ∈ RI1×...×Im×J1×...×Jn , and

oi1···im j1··· jn = ui1···im · v j1··· jn .285

In [40], Zhang et al. explored the hypergraph model and developed hypergraph sig-

nal processing tools for effectively denoising point clouds. The noisy point cloud with

n nodes is denoted by a location matrix s = [s1 s2 . . . sn]T. Given a hypergraph with

n nodes and longest hyperedge connecting m nodes, it can be represented by an m-th

order n-dimension representing tensor A =
(
ai1i2···im

)
∈ Rnm

, whose entry in position290

(i1, i2, · · · , im) is labeled as ai1i2···im . They referred the adjacency tensor as the represent-

ing tensor A, in which each entry
(
ai1i2···im

)
indicates whether nodes v1, v2, · · · , vm are

connected in the hyperedges. The representing tensor A can be decomposed via

A ≈
n∑

r=1

λr · fr ◦ . . . ◦ fr︸       ︷︷       ︸
m times

, (15)

where f′r s are orthonormal basis vectors called spectrum components, and λr are fre-

quency coefficients related to the hypergraph frequency. For clean point clouds, they295

estimated their spectrum components f′r s based on the hypergraph stationary process

and optimally determined their frequency coefficients λr based on smoothness to re-

cover the original hypergraph structure. Then, given the original signal s = [s1 . . . sn]T,

the hypergraph signal is defined as the (m − 1) times tensor outer product of s, i.e.,

s[m−1] = s ◦ . . . ◦ s︸     ︷︷     ︸
m−1 times

. (16)

Given the hypergraph signal s[m−1] and the representing tensor A, they jointly estimated300

hypergraph spectrum pairs (fr, λr) and denoised noisy point clouds.

Table 3 summarizes the characteristics of graph-based approaches discussed in this

section, with the emphasis on the graph construction method, filter, features, strengths

and weaknesses. All in all, graph-based techniques have proved to achieve very strong

performance when the noise level is low. However, at high noise levels, the graph305

construction can become unstable, negatively affecting the denoising performance [10,

11].
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Table 3: Summary of graph-based point cloud denoising methods

Method Graph construc-

tion

Filter Feature Comments

Duan et al. (2018) [41] k-NN Weighted multi-

projection

Projects each point to

its neighbors’ tangent

planes

Over-smoothing

Hu et al. (2020) [43] k-NN on patches Graph laplacian

regularizer using

the Mahalanobis

distance matrix

Feature graph learn-

ing for denoising

Requires small

amounts of data for a

stable estimation

Zeng et al. (2020) [44] k-NN on a mani-

fold

Signal-

dependent

feature graph

Laplacian regu-

larizer

Uses the patch mani-

fold prior

Preserves structural

detail

Dinesh et al. (2020) [45] Bipartite graph Signal-

dependent

feature graph

laplacian regu-

larizer

Applied on 3D co-

ordinates and surface

normals

Removes Gaussian

and Laplacian noise

only

Irfan et al. (2021) [42] k-NN graph

based on ge-

ometry and

color

The regularity of

the color, and its

correlation with

the proximity of

points

Takes advantage of

the correlation be-

tween the geometry

and color attribute

Both for geometry

and color denoising

Zhang et al. (2021) [40] Spectrum-based

hypergraph

Tensor-based

methods

Hypergraph signal

processing

Both for sampling

and denoising
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3. Optimization-based methods

Optimization-based denoising methods formulate the denoising process as an op-

timization problem. It seeks for a denoised point cloud that can best fit the input310

point cloud, and a set of constraints defined by the priors of the ground-truth geom-

etry and noise distribution. Optimization-based methods usually involve a number of

parameters and require careful trial-and-error parameter tuning to achieve decent re-

sults, especially for complex models. These methods can be generally classified into

four groups: Moving Least Squares (MLS)-based, Locally Optimal Projection (LOP)-315

based, sparsity-based, and non-local-based methods.

3.1. MLS-based methods

MLS-based methods reconstruct a smooth surface from the input point cloud, and

iteratively project input points onto the approximated underlying surface. As a pio-

neering work, Alexa et al. [50] first extended the MLS method proposed by [51] to320

define a smooth manifold surface from a set of points close to the original surface.

Afterwards, several modified MLS methods for feature preservation have been pro-

posed, such as robust MLS (RMLS) [52], and robust implicit MLS (RIMLS) [53].

However, due to the isotropic weights in the MLS, these methods tend to over-smooth

sharp features in the point cloud. Recently, Xu et al. [54] developed an anisotropic325

denoising algorithm based on a dense aggregation of MLS estimates defined on asym-

metric directional neighborhoods. For each point, its local coordinate system (LCS)

is first constructed by using local PCA. Then, they employed the Local Polynomial

Approximation (LPA)-Intersection of Confidence Intervals (ICI) technique [55] to au-

tomatically determine four adaptive directional neighborhoods. Thereby, four local330

MLS estimates are computed for each point. A novel strategy is introduced to aggre-

gate the overlapping adaptive local estimates of each point to gain a stable and accurate

estimation of the point. Thanks to asymmetric directional neighborhoods, their method

can adapt to edges and discontinuities using much larger supports than classical MLS

based on symmetric weights.335

All in all, MLS-based methods provide a degree of robustness in presence of out-

liers. However, these methods are designed to reconstruct surfaces with piecewise
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smooth priors. Therefore, sharp features can be easily removed together with noise.

3.2. LOP-based methods

Unlike MLS-based methods, instead of computing explicit parameters for the sur-340

face, LOP-based methods aim to produce a set of points to represent the underlying

surface while enforcing a uniform distribution over the point cloud. The original

parameterization-free LOP-based denoising technique, which was first proposed by

Lipman et al. [56], consists of two optimization terms: a data term and a repulsion

term. The data term projects a set of points onto the latent geometry of the input point345

cloud. While the repulsion term strives to keep the distribution of projected points fair.

However, the original LOP may fail to converge and cannot distribute points uniformly

under significant non-uniformity of input point clouds. Therefore, many modifica-

tions to [56] have been proposed, such as weighted LOP (WLOP) [57], edge-aware

resampling (EAR) [58], feature-preserving LOP operator (FLOP) [59], and continu-350

ous weighted LOP (CLOP) [60]. However, like most MLS-based methods, LOP-based

methods may also suffer from over-smoothing when the noise level is high because of

their inherent isotropic nature [13]. To address this issue, Lu et al. [61] proposed a

Gaussian Mixture Model (GMM) inspired anisotropic LOP approach for point cloud

denoising (GPF). The GPF mehtod also contains a data term and a repulsion term. A355

minor difference is that its data term is inspired by the GMM and incorporates the nor-

mal information. They assumed that the distribution of noisy input points follows a

GMM, which is defined by a set of centroids and covariances. After smoothing nor-

mals of the input point cloud with the bilateral filter [22], they projected points onto

the underlying surface by formulating the projection problem using a GMM. Features360

in the projected point cloud can be automatically preserved by considering the filtered

normal information during projection. They introduced energy terms to preserve geo-

metric features and obtained a uniform point distribution on the surface. However, the

GPF method may expand the volume of the input point cloud since it pushes points

into the edge region.365
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Figure 4: An illustration of the sparse reconstruction.

3.3. Sparsity-based methods

Sparsity-based methods, which are based on the sparse representation theory [65],

hold the assumption that many common surfaces are piecewise smooth. In other words,

the surface is smooth almost everywhere except at some small number of sparse fea-

tures that form sharp features [66]. These methods seek to represent the point cloud as370

a linear combination of a few elementary signals from a possibly redundant dictionary

[62]. To learn a good dictionary over which the signals will be sparsely decomposed,

as illustrated in Figure 4, a typical sparse reconstruction problem can be defined as the

minimization of [67]:

min
C

1
2
‖ X − DC ‖2F +λ ‖ C ‖p, (17)

where X ∈ Rn×m is the data matrix constructed from the input noisy point cloud P,375

whose columns are signals, D ∈ Rn×k is a dictionary which is possibly over-complete,

C ∈ Rk×m is the matrix of sparse coefficients, λ controls the trade-off between sparsity

and reconstruction error, F denotes the Frobenius norm, and 0 ≤ p ≤ 1. If p = 0,

Eq. (17) is a non-convex norm such that it is quite hard to obtain the optimal result .

Otherwise, when p = 1, Eq. (17) is convex, and a lot of approaches have been invented380

to solve it [67].

Sparsity-based methods generally cover two main steps. In the first step, a sparse

reconstruction of surface normals is obtained by solving a global minimization problem

with sparsity regularization. In the second step, each point is updated by solving global

minimization based on reconstructed normals and local planarity hypothesis.385
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In earlier works, the `1 [68] and `0 [66] based regularization methods used the

sparsity of first order information to remove noise. These methods preserve sharp fea-

tures well but may suffer from undesired staircase effects in smoothly curved regions

because of their high sparsity requirement [32]. The Moving Robust Principal Compo-

nents Analysis (MRPCA) proposed by Mattei et al. [62] used weighted `1 minimization390

of the point deviations from the local reference plane to preserve sharp features. They

modeled the point cloud as a collection of overlapping two-dimensional subspaces,

where each point will be a member of multiple overlapping neighborhoods. They intro-

duced a method in which all the independent estimates for a single point are pooled to

yield a collaborative estimate for that point. Sharp features are preserved via a weighted395

`1 minimization, where the weight measures the similarity between normal vectors in

a local neighborhood. However, their method, which depends on sparse and low-rank

modeling, tends to over-sharpen smoothly curved features. In the same spirit of MR-

PCA, Leal et al. [63] proposed a new model to reconstruct and smooth point clouds,

combining `1-median filtering with sparse `1 regularization. Different from MRPCA,400

they used sparsity in both data fitting and the prior term. Their approach comprises two

iterative steps, namely normal denoising and point position updating. In the normal

denoising step, they first found a regression plane equidistant to all heights in a local

neighborhood. Then, they calculated the normal at the plane by integrating `1-median

height filter and `1 regularization of total variation. In the point position updating step,405

based on the estimated normals, they updated each point by using the orthogonal dis-

tance of the noisy point to the local regression plane, shifting the point along the normal

direction projecting it onto the plane.

In addition to the above `1 [68] and `0 [66] based regularization methods, Digne et

al. [64] introduced the dictionary learning algorithm and developed a statistical method410

to discover the structures of a given shape by building a dictionary of its local variations

yielding a sparse description of the surface. The dictionary constructed from learned

examples contains atoms which can be understood as approximating the patches using

a sparse linear combination of atoms. To do so, they first presented a shape analysis

approach based on the non-local analysis of local shape variations, called Local Prob-415

ing Field (LPF). The LPF captures both local geometrical and topological variations of
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Table 4: Summary of sparsity-based point cloud denoising methods

Method Sparse recon-

struction

Feature Comments

MRPCA (2017) [62] `1 based regular-

ization

Robust PCA solver for convex

optimization

May produce an over-

sharpened result in the region

of curved sharp edges

Leal et al. (2020) [63] `1 based regular-

ization

`1-median filtering with

sparse `1 regularization

Needs parameter tuning

LPF (2018) [64] Dictionary learn-

ing

Jointly learns the set of LPFs Sensitive to the dictionary size

the shape. Then, by carefully optimizing the position and orientation of each descrip-

tor, they provided a new tool to capture shape similarities, and gathered them into a

geometrically relevant dictionary over which the shape decomposes sparsely.

Table 4 summarizes the sparsity-based methods discussed in this section, underlin-420

ing the sparse reconstruction method, features, merit and demerit. These approaches

may lead to over-smoothing or over-sharpening at high levels of noise because of the

poor normal estimation. Another limitation of these approaches is the computational

complexity. They always undergo several denoising iterations.

3.4. Non-local-based methods425

Non-local-based methods, which originate from the image denoising field [69], are

inspired by the geometric statistics which indicate that a number of surface patches

sharing approximate geometric properties always exist within a 3D model. They ex-

ploit the non-local self-similarity that exists between patches in point clouds to bet-

ter preserve fine shape features [70, 71, 72, 73]. While many local-based methods430

have been shown to produce promising results in denoising point clouds, such as

RIMLS [53], EAR [58], MRPCA [62] and GPF [61], they are often criticized for

over-smoothing since they only utilized the local structure information of each point,

overlooking the non-local structures with self-similarity. However, it is challenging to

adopt non-local similarity from regular images to irregular point clouds, and two main435

problems should be solved [74]: the representation of irregular local structures of point

clouds, and the feature descriptor for robustly measuring the similarity between local
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Patch grouping Patch vectors Patch matrix

Figure 5: An illustration of patch grouping and patch matrix construction.

structures.

Generally, non-local-based methods partition the input point cloud into small patches,

and pack similar patches into patch groups, which are normally represented by matri-440

ces, as illustrated in Figure 5. Let X be the matrix constructed from a patch group

of the input noisy point cloud P. For each patch group, since its patches share the

most similar geometry structures than the other patches, the constructed patch matrix

X should be low-rank and live in a low dimensional subspace. Thus, the point cloud

denoising process can be transformed into a low-rank recovery problem. Let A be the445

low-rank matrix that we wish to recover, we can formulate the following low-rank re-

covery model based on a low-rank prior to efficiently recover the ground-truth matrix

in each patch group [75]:

min
A

rank(A) + λ‖X − A‖2F (18)

where rank(· ) is the rank function of a matrix, λ is a parameter which balances the noise

measurement and the low-rankness, and F denotes the Frobenius norm. By solving450

Eq.(18), the denoised point cloud can be reconstructed from the recovered matrix A.

Lu et al. [76] extend the non-local method to the normal field and proposed a ro-

bust normal estimation method for point clouds using a low-rank matrix approximation

algorithm. They defined a local isotropic structure as a subset of points that are on the

same isotropic surface with the representative normal. Non-local similar structures are455

searched and organized into a matrix in the context of isotropic surfaces rather than

anisotropic surfaces. A low-rank matrix approximation algorithm was derived to esti-

mate normals via weighted nuclear norm minimization on non-local similar structures.
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Instead of packing similar patches in the normal field [76], Chen et al. [74] devised

a multi-patch collaborative point cloud denoising method in the surface height field.460

They defined a rotation-invariant height-map patch (HMP) for each point by sampling

the local surface height over a well-established local frame. Assumed that the con-

structed HMP group matrices satisfy the low-rank structure, they grouped its non-local

similar patches and packed them into a height-map patch-group matrix. An improved

low-rank matrix recovery method with graph constraints was proposed to filter noise.465

However, the HMP requires a high density of point cloud. Inspired by [76] and [74],

Zhou et al. [77] projected the neighboring points of each point onto its normal, called

normal height projection. They developed a structure-aware descriptor called projec-

tive height vector to capture the local height variations by normal height projection.

The most similar non-local projective height vectors are grouped into a height matrix,470

which is then optimized by an improved weighted nuclear norm minimization.

In addition to the low-rank matrix approximation, non-local-based methods are

also strongly related to the dictionary learning technique. Given a set of signals, these

methods aim at finding a dictionary and a set of coefficients that best describe the

signals. For example, in [64], Digne et al. proposed a shape analysis framework that475

reveals the shape similarities and its local dimensions. They consolidated local probing

fields to represent the deformation of a pattern onto the local shape regardless of its

local dimensionality. A geometrically relevant shape dictionary is then constructed as

a new tool for sparse shape description.

Non-local methods have also been widely used in graph-based methods. For ex-480

ample, in [43] and [44], they partitioned the input point cloud into several overlapping

surface patches. The k-NN algorithm is employed to search the nearest patches of each

patch as neighbors. Finally, the patch-based graph is built over each pair of adjacent

patches.

A summary of the approaches discussed in this section can be found in Table 5. The485

concept of non-local self-similarity combined with low-rank matrix recovery or dictio-

nary learning technique has remained the potential idea for most of the state-of-the-art

point cloud denoising methods, such as graph-based methods, sparsity-based methods,

etc. However, these approaches may suffer from artefacts and performance degrada-
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Table 5: Summary of non-local-based point cloud denoising methods

Method Features Comments

Lu et al. (2020) [76] Local isotropic structure patch in the

normal field; low-rank matrix approxi-

mation

Suitable for offline geometry

processing

Chen et al. (2020) [74] Rotation-invariant height-map patch in

the surface height field; low-rank ma-

trix approximation

Time-consuming; over-

sharpens some non-sharp

regions

Zhou et al. (2021) [77] Projective height vector in the normal

height field; low-rank matrix approxi-

mation

Structure preservation; sensi-

tive to the density of point

clouds

Hu et al. (2020) [43] k-NN on patches; Graph laplacian reg-

ularizer using the Mahalanobis dis-

tance matrix

Requires small amounts of

data for a stable estimation

Zeng et al. (2020) [44] Low-dimensional manifold model; dis-

crete patch-based graph laplacian regu-

larizer

High complexity

LPF (2018) [64] Consolidate local probing fields (LPF)

as a local frame, dictionary learning

Sensitive to the dictionary size
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tion when the input point cloud lacks in similar patches. Besides, the computational490

complexity of these methods is usually high.

4. Deep learning-based methods

Currently, driven by the success of deep learning in diverse computer vision, com-

puter graphics, and image processing tasks, deep-learning-based methods have made

their debut for point cloud denoising [7, 8, 9, 10, 11, 12, 13, 16, 17, 18]. After learn-495

ing a mapping from the noisy inputs to their ground-truth counterparts in an offline

stage, they can be automatically executed on new cases sharing similar geometry and

noise characteristics of trained models in the runtime stage. Based on the availability

of input data’s labels, deep learning-based methods can be categorized into two types:

supervised denoising methods and unsupervised denoising methods.500

4.1. Supervised denoising methods

Supervised approaches rely on pairs of clean and noisy point clouds, which in prac-

tice are produced by adding noise (i.e. Gaussian noise, impulsive noise) to synthetic

point clouds. According to the network architecture used for the feature learning of

each point, supervised methods can be classified into PointNet-based, convolution-505

based, and encoder-decoder-based methods.

4.1.1. PointNet-based architecture

These methods employ the PointNet [78] or PointNet++ [79] to learn the feature

of each point. The pioneering PointNet [78] directly takes point clouds as the input

and learns features for each point independently with several shared Multi-Layer Per-510

ceptrons (MLPs), as shown in Figure 6. To capture the local structural information

between points, Qi et al. [79] proposed a hierarchical network PointNet++ to capture

fine geometric structures from the neighborhood of each point. Because of its sim-

plicity and strong representation ability, recently, a few point cloud denoising methods

have been developed based on PointNet.515

Inspired by the PointNet [78], Guerrero1 et al. [80] proposed a local variant of

PointNet, called PCPNet, to estimate local 3D shape properties in point clouds, which
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Figure 6: An illustration of the architecture of PointNet [78].

gives better results for shape details and is applicable to denoise point clouds. Since

the PointNet extracts the local feature based on the position of a single point only, and

do not include any neighborhood information, the proposed PCPNet is applied to local520

patches, centered at points with a fixed radius r proportional to the point cloud?s bound-

ing box extent. They constrained the first spatial transformer of PointNet to the domain

of rotations, and exchanged the max symmetric operation with a sum. The PCPNet

learns a set of k non-linear functions in the local patch neighborhoods, and gives a

k-dimensional feature vector per patch that can then be used to regress various local525

features. Based on the denoising architecture of PCPNet [80], Rakotosaona et al. [9]

proposed a two-stage data-driven denoising architecture, called PointCleanNet, which

involves a local outlier detection network and a denoising network. The local outlier

detection network uses an architecture based on the PCPNet [80] to detect and remove

outliers. The denoising network, with a similar architecture of the PCPNet [80] but a530

different loss, aims at reducing the noise level by estimating correcting displacement

vectors, which results in the denoised point cloud.

In addition to the PointNet [78], Yu et al. [7] proposed the first deep-learning-based

edge-aware network (EC-Net) based on the PointNet++ [79] for consolidating point

clouds. They partitioned the point cloud into patches such that the points in a patch535

are geodesically close to one another over the underlying surface. The PointNet++

[79] was then used to encode the local geometry into a feature vector for each point in

an input patch, followed by a feature expansion mechanism. Then, they regressed the
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(a) (b)

Figure 7: An illustration of 2D convolution and graph convolution. (a) Convolution operations on an image.

The neighbors of each pixel are ordered and have a fixed size. (b) Convolution operations on a graph. To

get the hidden representation of the red node, a typical graph convolutional operation is to take the average

value of the node features of the red node along with its neighbors. The neighbors of each node in a graph

are unordered and variable in size.

residual point coordinates and the point-to-edge distances from the expanded features.

They formulated a regression component to simultaneously recover 3D point coordi-540

nates by adding the original point coordinates to the residual, and an edge-aware joint

loss function to directly minimize distances from output points to 3D meshes and to

edges.

4.1.2. Convolution-based architecture

The main drawback of the above PointNet-based techniques is that they work on545

individual points, and cannot exploit the local structure of the neighborhood well. Be-

sides, these solutions are still limited by the fact that their networks cannot learn hier-

archical feature representations, like standard Convolutional Neural Networks (CNN).

Therefore, convolution-based architectures have been introduced to denoise point clouds.

However, compared with kernels defined on 2D grid structures (e.g., images), it is dif-550

ficult to design convolutional kernels for point clouds due to their irregular structures.

Existing methods either project the input point cloud into 2D images (e.g. heightmap)

[8, 12], or represent it as graphs followed by graph convolution operations [10, 11], as

illustrated in Figure 7 [81].

Riccardo et al.[8] presented the first deep learning method for local point cloud555

processing with a fully differentiable, CNN-based deep learning architecture, called

26



PointProNet. Similar to [7], their approach was also designed based on local patches.

Specifically, they represented a patch of geometry around a point as an oriented 2D

heightmap that stores the distance to the sample points in the neighborhood along a

given direction. Their main idea is to learn a local mapping that transforms each set of560

points extracted from a local patch to its consolidated version, where the output points

sample the underlying surface very accurately and densely. To this end, two fully dif-

ferentiable components called heightmap generation network (HGN) and heightmap

denoising network (HDN), were designed to learn the mapping from a noisy patch

of points to its consolidated version. The HGN learns a local coordinate frame for565

projection, projects the points onto the corresponding image plane with a projection

module, and resamples the resulting 2D heightmap to obtain the regularly sampled im-

age. Then, the HDN uses image convolutions to transform the noisy 2D heightmap

into a denoised version. Finally, patches of points are denoised by projecting them to a

learned local frame and using CNN in a supervised setup to move the points back to the570

surface. Similar to [8], Lu et al. [12] also developed a CNN-based feature-preserving

normal estimation framework based on 2D heightmap for point cloud denoising. In the

training stage, to meet the classical CNN requirement, they first represented each point

and its neighbors as a 2D heightmap by a simple projection approach based on PCA.

Then, they classified points into feature points and non-feature points via a classifica-575

tion network based on LeNet [82]. The normal estimation network with ResNet18 [83]

as the backbone is then trained on feature points and non-feature points, respectively.

In the testing stage, they employed the efficient point update algorithm [76] to match

estimated normals.

Except for the CNN defined on 2D heightmap [8, 12], Pistilli et al. [10, 11] pre-580

sented a Graph-convolutional Point Denoising Network (GPDNet) to denoise point

clouds based on graph-convolutional layers. Graph convolution is a generalization of

convolution to data that are defined over the nodes of a general graph rather than a

grid. The proposed graph-convolutional layer has two inputs: a tensor representing a

feature vector for each point, and a graph where nodes are points and edges represent585

similarities between points. Different from [9] which works on fixed-size patches, the

proposed architecture has an elegant fully-convolutional behavior that can build hier-
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Input Output
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Figure 8: An illustration of the architecture of autoencoders. The encoder layer encodes the input signal x as

a compressed representation z in a reduced dimension. The decoder layer decodes the encoded signal z back

to the original dimension x′.

archies of local or non-local features to effectively regularize the denoising problem.

They transformed the 3D space into an F-dimensional feature space gradually using a

simple block composed of three single-point convolutions. Then, they employed a cas-590

cade of two residual blocks with an input-output skip connection to reduce vanishing

gradient issues. Each residual block is composed of three graph-convolutional layers.

They adopt a dynamic graph construction strategy by searching the k-NN of each point

in terms of Euclidean distances in the feature space after every residual block. Finally,

the last graph-convolutional layer projects the features back to the 3D space.595

4.1.3. Autoencoder-based architecture

In addition to PointNet-based architectures and convolution-based architectures,

the autoencoder architecture has also been employed to denoise point clouds. Figure

8 shows an example of autoencoders which consist of three layers: encoder, code, and

decoder. The Pointfilter [13] proposed by Zhang et al. is a typical encoder-decoder600

architecture network for point cloud denoising. They straightforwardly took the raw

neighboring points of each noisy point as input, and regressed a displacement vector

to push this noisy point back to its ground truth position. Given a noisy patch, they

used PCA for alignment and fed the aligned patch into the neural network. The en-

coder consists of two main parts: feature extractors and a collector.They employed the605
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Table 6: Summary of supervised point cloud denoising methods

Method Network architecture Loss Functions Comments

PCPNet (2018) [80] PointNet Normals: Euclidean dis-

tance, angle difference;

Curvatures: rectified error

for training and the RMS

for evaluation

Fail in the presence of

large flat areas

PointCleanNet (2020) [9] PCPNet; outlier detection

network; denoising net-

work

Proximity to the surface;

regular distribution on the

surface

Sensitive to outliers; point

cloud shrinking

EC-Net (2018) [7] PointNet++; Edge dis-

tance regression; coordi-

nate regression

Surface loss; edge loss;

repulsion loss; edge dis-

tance regression loss

Manually annotates sharp

edges; fixed patch size;

poor in tiny structures

PointProNet (2018) [8] Heightmap generation

network; heightmap

denoising network

Distance between de-

noised and ground truth

heightmap

Fails in large holes and

high level noise; artifacts

in extreme sharp edges

Lu et al. (2020) [12] LeNet for classification;

ResNet18 for normal esti-

mation

Weighted `2 distance Fails in severe noise and

significant outliers

GPDNet (2020) [10, 11] Graph-convolutional

layer

MSE; MSE-SP Robust to high level of

noise and structured noise

distributions

PF (2021) [13] Encoder-decoder network Projection distance Requires ground-truth

point normals in the

training stage
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PointNet [78] as the backbone in the feature extractors. The collector aggregates each

point feature by a max-pooling layer. In the decoder module, a regressor constructed

by three fully connected layers is employed to evaluate the displacement vectors with

the latent representation vector as input. The trained neural network can automatically

generate a set of clean points from the input noisy point cloud.610

Table 6 summarizes the supervised denoising approaches discussed in this sec-

tion. Although the differences between these methods are very large, they are essen-

tially combinations of fundamental components, such as network architectures and loss

functions. Supervised denoising approaches have achieved impressive results for point

cloud denoising. However, these methods heavily depend on expensive training over615

massive datasets, most of which are generally produced by adding different noises to

synthetic point clouds. They may also suffer from performance degradation when the

data to be denoised deviates significantly from the training datasets.

4.2. Unsupervised denoising methods

Unsupervised methods strive to denoise point clouds directly without the need of620

pairs of clean and noisy point clouds, since it is unavailable and difficult to generate

ground-truth data in various contexts [16]. In the image denoising field, Noise2Noise

[84], and its extensions Noise2Self [85] and Noise2Void [86] have demonstrated how

denoising can be achieved in an unsupervised manner without clean data. However,

few related works have been reported for point cloud denoising in the literature. Ex-625

isting unsupervised denoising methods commonly adopt an autoencoder-based archi-

tecture. A summary of the network architecture and loss functions employed in the

unsupervised approaches discussed in this section can be found in Table 7.

TotalDenoising [16] is the first unsupervised learning method for denoising point

clouds without needing access to clean examples, and not even noisy pairs. It is based630

on the assumption that points with denser surroundings are closer to the underlying

surface. They employed an unstructured encoder-decoder based on Monte Carlo con-

volution that maps the point cloud to itself in combination with a spatial locality and

a bilateral appearance prior. By imposing priors, the method can directly train on

noisy data without needing ground truth examples or even noisy pairs. However, this635
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Table 7: Summary of unsupervised point cloud denoising methods

Method Network architecture Loss Functions Comments

TotalDenoising (2019) [16] Unstructured encoder-

decoder based on Monte

Carlo convolution

`2 loss Cannot preserve share

features; sensitive to

outliers

Chen et al. (2020) [17] Encoder: PointNet; De-

coder: folding module,

graph-topology-inference

module, graph-filtering

module

Augmented Chamfer dis-

tance

Effective in reconstruc-

tion, visualization, and

transfer classification

Luo et al. (2020) [18] Encoder: DGCNN; De-

coder: MLP

Supervised training loss:

Chamfer distance, Earth

Mover’s distance; unsu-

pervised training loss: `2

loss

Trained in either a su-

pervised or unsupervised

fashion

method cannot preserve sharp features due to a lack of sharp feature information dur-

ing the training stage. To explore geometric structures of point clouds, Chen et al. [17]

proposed a deep autoencoder with graph topology inference and filtering to achieve

compact representations of unorganized point clouds in an unsupervised manner. The

encoder adopts similar architectures as in PointNet [78], and the graph-based decoder640

consists of three novel modules: the folding module, the graph-topology-inference

module, and the graph-filtering module. The folding module folds a canonical 2D lat-

tice to the underlying surface of a 3D point cloud, achieving coarse reconstruction.

The graph-topology-inference module learns a graph topology to represent pairwise

relationships between 3D points, pushing the latent code to preserve both coordinates645

and pairwise relationships of points in 3D point clouds The graph-filtering module,

which is designed based on a learnable graph topology, couples the above two mod-

ules, refining the coarse reconstruction through a learned graph topology to obtain the

final reconstruction.

Different from [16] and [17] which infer the displacement of noisy points from650

the underlying surface and implicitly recover the point cloud, Luo et al. [18] pro-

posed to explicitly learn the underlying manifold of a noisy point cloud for denoising

via an autoencoder-like network. The encoder, which builds on the Dynamic Graph
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CNN (DGCNN) [87], learns both local and non-local feature representations of each

point and then samples points with low noise that tend to be closer to the underlying655

surfaces via an adaptive differentiable pooling operation. Then, the decoder infers un-

derlying patch manifolds by transforming each sampled point along with its embedded

neighborhood feature to a local surface. The clean point cloud is finally obtained by

resampling on the reconstructed manifold. Their network can be trained end-to-end

in either a supervised or unsupervised fashion because of the included unsupervised660

training loss.

5. Quality assessment

Different quality assessment metrics have been proposed to evaluate the perfor-

mance of various point cloud denoising algorithms. These methods can be classified

into subjective assessment methods and objective assessment methods.665

5.1. Subjective assessment methods

Subjective assessment of point clouds is generally performed through visual com-

parisons [54, 61, 88, 89, 90, 91, 92]. According to the representation of rendered point

clouds, these methods can be divided into raw point clouds based and surface recon-

struction based methods.670

5.1.1. Raw point clouds based methods

This kind of method renders original noisy point clouds and corresponding de-

noised ones produced by different denoising algorithms from the same view. The point

of view should be carefully selected to show denoised regions, such as sharp edges

and corners [32, 33]. The performance of different denoising algorithms are evaluated675

by comparing the rendered raw point clouds subjectively. However, subjective evalua-

tion may be difficult if point clouds are displayed directly to the observer without the

surface reconstruction [88].
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Table 8: Objective point cloud quality assessment methods

Method Feature

HD [98, 99] Point-to-point

RMSE [98] Point-to-point

PSNR [100, 101] Point-to-point

CD [13] Point-to-point

Javaheri [96, 100] Point-to-plane

Alexiou [102] Plane-to-plane

Javaheria [103] Point-to-distribution

5.1.2. Surface reconstruction based methods

This type of method performs the quality evaluation after reconstructing denoised680

point clouds [54, 61, 89, 90, 91, 92]. Different surface reconstruction algorithms may

have different robustness against introduced degradations [93]. For example, Xu et al.

[54] employed the surface reconstruction toolbox [94] to reconstruct 3D surfaces of de-

noised point clouds. Lu et al. [61] adopted a feature preserving surface reconstruction

method (i.e., RIMLS [53] in Meshlab [95]) to reconstruct denoised results. In [96],685

Javaheri et al. rotated the point cloud around a vertical and horizontal axis, produc-

ing a slowly continuously changing point of view. Then, they employed the Poisson

surface reconstruction algorithm [97] to generate 2D video sequences from different

point of views. Note that all point clouds should be reconstructed via identical surface

reconstruction parameters for fair comparison.690

5.2. Objective assessment methods

Although subjective assessment has higher accuracy, it is typically rather cumber-

some, time-consuming, and expensive. Therefore, most works available in the lit-

erature use objective quality metrics. Objective assessment methods can be distin-

guished into three categories: (a) point-to-point, (b) point- to-plane, and (c) point-to-695

distribution.Table 8 summarizes objective quality assessment metrics introduced in this

section.
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5.2.1. Point-to-point distance

Point-to-point distance metrics compute the distance between points in the noisy

point cloud and points in the corresponding clean point cloud [96].700

Hausdorff Distance (HD). The classical HD generally falls into two categories:

asymmetric Hausdorff distance and symmetric Hausdorff distance [98]. Let e(p,A)

denote the distance from a point p to the point cloudA :

e(p,A) = min
pAi ∈A

d(p, pAi ), (19)

where d(, ) is the Euclidian distance, and pAi is the i-th point ofA. Then, the asymmet-

ric Hausdorff distance between two point cloudsA and B is defined as:705

Hasy(A,B) = max
pAi ∈A

e(pAi ,B). (20)

The symmetric Hausdorff distance is then defined as follows:

Hsym(A,B) = max{Hasy(A,B),Hasy(B,A)}. (21)

However, the above classical Hausdorff distance based geometry quality metrics

are sensitive to outliers. Besides, points with a large error magnitude will dominate

the final quality score even for cases where these points may not even be visible due to

self-occlusion, which will lead to low objective-subjective correlation. Therefore, Java-710

heri et al. extended the classical Hausdorff distance and proposed a quality evaluation

strategy called the generalized Hausdorff distance [99]

Hgen(A,B) =per Kth
pAi ∈A

d(pAi ,B), (22)

where perKth
pAi ∈A

is the Kth ranked distance. Instead of taking the maximum distance

over all the distances as in the classical Hausdorff distance, the generalized Hausdorff

distance for the rank K is computed using only the K lowest distance values after715

ranking all distances in ascending order. Therefore, it can be used to identify the best

performing quality metric in terms of correlation with the Mean Opinion Score (MOS)

scores obtained from a subjective test campaign.

Root Mean Square Error (RMSE). RMSE is the square root of the mean square

error (MSE), which is measured by averaging the distance from all the points in B to720
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their nearest neighbor points in the reference point cloudA [96]:

RMSE(A,B) =
√

MSE(A,B) =

√√
1
n

n∑
i=1

‖ pAi − pBi ‖
2, (23)

where n is the number of points, and pBi is the point of B corresponding to the point

pAi ofA.

Mean City-block Distance (MCD). MCD is similar to MSE with `2 norm replaced

with `1 norm [44]:725

MCD(A,B) =
1
n

n∑
i=1

|pAi − pBi |. (24)

Peak signal to noise ratio (PSNR). PSNR is defined as 10log 10 of the ratio of a

peak value M to the square root of MSE between the noisy and the reference point cloud

[100, 101]. The MSE proposed so far could be reported as a metric, and sometimes it

is preferred because it carries the physical units in 3D space. However, people often

found it hard to understand MSEs between multiple point clouds. Therefore, PSNR is730

introduced to convert MSEs into PSNR numbers, normalizing the metrics with respect

to the peak value M. Mathematically, PSNR is defined as follows :

PSNR(A,B) = 10 log 10
(

M2

MS E(A,B)

)
. (25)

The peak value M is usually defined as the diagonal distance of a bounding box of the

point cloud.

Chamfer distance (CD). The CD metric can be viewed as an indicator function735

that measures the similarity between two point clouds. It finds the nearest neighbor in

the other point cloud, and sums the squared distances up [9, 13, 16]. CD is defined as :

CD(A,B) =
1
|A|

∑
pAi ∈A

min
pBj ∈B

(‖ pAi − pBj ‖
2
2)+

1
|B|

∑
pBj ∈B

min
pAi ∈A

(‖ pBj − pA
i ‖

2
2).

(26)

5.2.2. Point-to-plane distance

The point-to-plane distance first computes the normal of the surface at every point

in the reference point cloud as an indication of the local surface. The displacement of740
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every corresponding point in the noisy point cloud is then projected onto the normal to

calculate the point-to-plane distance [54, 96, 100] . The steps of computing point-to-

plane distance are listed as follows:

• For each point pAi in point cloud A, find the nearest neighbor point pBj in point

cloud B as its corresponding point.745

• Compute the unit normal vector nAi on point pAi in the reference point cloudA,

if available. Otherwise, the normal vector would be estimated on the fly using a

state-of-the-art method [104].

• Compute the error vector E(i, j) by connecting pAi to pBj .

• Project the error vector E(i, j) along the normal direction nAi to get the point-to-750

plane error:

e(A,B) =
1
|A|

∑
pAi ∈A

(E(i, j) · nAi )2. (27)

5.2.3. Point-to-distribution distance

The point-to-distribution distance adopts the correspondence between a point and

the distribution of points from a small point cloud region [103]. The basic idea is

to statistically characterize the point cloud surface, notably through the covariance of755

points within some local regions. It employs the Mahalanobis distance to measure the

distance between a point and a distribution. In addition, it is accurate when the noisy

and reference point clouds have different characteristics, such as precision, density, and

structure.

6. Experimental results and discussions760

In this section, extensive experiments are conducted to investigate the performances

of selected point cloud denoising methods.

6.1. Experimental settings

The compared popular and state-of-the-art point cloud denoising algorithms in-

clude RIMLS [53], CLOP [60], GPF [61], LPF [64], PointCleanNet [9], Pointfilter765
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[13], and AD [54]. The CLOP [60], GPF [61], LPF [64],PointCleanNet [9], Pointfilter

[13], and AD [54] are implemented from the source codes provided by their respective

authors for fairness. For RIMLS [53], we used the corresponding function integrated

into the Meshlab software [95]. For fair comparisons and visualization purposes, we

manually tune the main parameters of each comparison algorithm to achieve as good770

visual results as possible (PointCleanNet [9] and Pointfilter [13] have fixed param-

eters). The PSNR introduced in Section 5.2 is employed to evaluate the quality of

denoising results. 25 typical 3D clean point clouds with different features and their

corresponding noisy models are synthesized by adding Gaussian noise with a standard

deviation of 1% of the clean models’ bounding box diagonal length.775

6.2. Visual Comparisons

Figure 9 presents the visual assessment of six denoised point clouds. Overall, it

can be observed that Pointfilter [13] and AD [54] generate visually better results in

terms of noise removal and feature preservation, as shown in Figure 9. GPF [61] yields

positional distortion around sharp edges, and it depends greatly on the capability of780

normal filters which become less robust when meeting large noise. RIMLS [53] may

smooth out some sharp features when using a large filter scale for removing noise.

And, it requires quality normals and trial-and-error parameter tuning. Despite that the

CLOP [60] is good at generating smooth results, they rely on the support radius to

generate desirable results and still fail to retain sharp features. For noisy models with785

both smooth and sharp edges, such as the cube sphere model, all these methods seem

to encounter difficulty at balancing the trade-off between preserving sharp features and

smooth areas to varying degrees.

6.3. Quantitive Comparisons

Table 9 summarizes quantitative results of different methods. There is no doubt790

that Pointfilter [13] and AD [54] achieve a better filtering performance. As a non-deep-

learning-based method, AD [54] generates comparable results to Pointfilter [13]. For

non-deep-learning-based methods, they may require trial-and-error parameter tuning

to obtain satisfactory results, which is tedious, time-consuming, and especially difficult
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Table 9: PSNR results of different methods on 25 noisy point clouds, which are synthesized by adding

Gaussian noise with a standard deviation of 1% of their clean models’ bounding box diagonal length (dB)

Models(points) RIMLS [53] CLOP [60] GPF [61] LPF [64] PointCleanNet [9] Pointfilter [13] AD [54]

bunny(35947) 48.1857 48.4146 42.8261 48.7172 48.3412 49.2297 49.0393

Cube(24578) 45.5341 44.5173 42.2118 45.268 44.2063 45.5069 45.8145

Eight(29580) 45.5466 44.6984 36.5813 45.8541 44.6491 45.8858 45.2505

Joint(69544) 46.2033 45.0441 41.6862 46.4824 45.1500 46.7316 46.5271

Kitten(24956) 45.4730 44.4748 40.0056 45.8713 44.4175 46.0214 45.6003

Plane-sphere(18531) 48.8509 48.1370 42.7978 49.4534 47.9223 49.4595 49.4422

block(32370) 42.9914 42.3013 42.1779 43.1771 42.2128 43.6166 43.3533

child(50002) 47.6989 48.2588 43.3147 48.3816 48.4493 48.6345 49.1511

chinese lion(50003) 41.9390 43.2764 38.6749 42.7804 43.6654 43.3093 44.1240

eros100K(50002) 45.2728 45.3624 39.9963 45.5562 45.8594 44.8889 46.1356

fertility(13971) 46.3205 46.3539 44.1436 46.7658 46.0688 47.4635 47.3425

genus3(29663) 47.7402 48.3228 44.3067 48.4552 48.3011 49.6790 49.2529

grayloc(34274) 45.0994 46.3928 41.5385 45.8805 46.7177 47.4295 47.2238

horse(48485) 40.1681 45.2767 35.4816 42.1123 45.2834 45.9057 46.1371

part Lp(25994) 47.6773 46.6724 43.5530 47.7082 46.6810 48.1388 47.9187

pulley(50000) 43.4536 45.0524 42.3665 44.7348 45.3355 45.1186 45.3711

bumpy torus(16815) 46.3100 44.4732 39.7064 45.8164 44.7101 44.9595 45.6648

pyramid(12290) 45.1285 44.1825 44.6298 45.1055 44.3652 45.4668 45.7149

rolling stage(49988) 47.9001 48.2946 41.5853 48.5863 48.5864 49.0758 49.6429

screwdriver(27152) 36.1560 41.1380 36.6015 38.5769 42.5170 43.6648 42.6747

sharp sphere(28051) 45.4127 44.3338 42.1241 45.3046 45.0015 45.6641 45.6852

smooth-feature(24871) 44.6808 43.4985 44.7482 44.6553 43.3647 44.7917 44.9690

sphere(16386) 46.2519 44.6893 42.1789 45.6329 44.8021 46.2177 46.2686

star(18146) 48.2372 46.8414 41.4964 48.1927 46.8238 48.3193 48.0599

trim-star(24467) 48.1751 47.5566 46.2349 48.5228 47.6599 49.0233 48.7306
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Figure 9: Comparison of denoising results on six noisy point clouds with the color of each point indicating

its PSNR. The noisy point clouds are synthesized by adding Gaussian noise with a standard deviation of 1%

of their clean models’ bounding box diagonal length. From top to bottom: block, part Lp, star, cube sphere,

child, and horse. From the left column to the right: the noisy input, the denoising results of RIMLS [53],

CLOP [60], GPF [61], LPF [64], PointCleanNet (PCN) [9], Pointfilter (PF) [13], and AD [54].

for users who do not have any background knowledge. In contrast, deep-learning-based795

methods, such as Pointfilter [13] and PointCleanNet [9], are automatic and easy to use.

The main challenges for these approaches are that the training is very time-consuming,

and the training results are greatly affected by the training set (i.e. the features not

included in the training set cannot be recovered).

7. Open challenges and future directions800

In this section, we discuss several open challenges and future directions of point

cloud denoising.

39



7.1. Real-world noise

The majority of existing point cloud denoising methods were designed for specific

kinds of noise with different levels, such as Gaussian noise [13]. In particular, most805

deep-learning-based techniques learned denoising models from pairs of clean and syn-

thetic noisy point clouds [7, 8, 9, 10, 11, 12, 13]. However, the assumption of specific

noise is too ideal to be true for real-world noisy point clouds, where the noise is much

more complex and varies with different scenes and sensors [5]. Although there have

been a few unsupervised methods developed for real-world noisy point cloud denois-810

ing [15, 16, 17, 18]. These algorithms aim to directly learn latent representations for

denoising from the noisy point cloud in an unsupervised manner. However, their over-

all performance on real-world noise is still limited. Therefore, it is desirable to further

investigate the problem of real-world noisy point cloud denoising.

7.2. Automatic parameter tuning815

Most classical point cloud denoising methods contain user-defined parameters, and

thus parameter tuning is of great importance to these algorithms for faster convergence

rate and better visual quality of denoised point clouds. In most cases, users must care-

fully tune these parameters, which are empirically assigned as constant numbers, to

achieve the best quality results for each input noisy point cloud [13, 74]. It is a quite820

labor-intensive and time-consuming job that largely reduces the applicability. There-

fore, how to automatically optimize parameters is an exciting and challenging problem.

7.3. Benchmarking point cloud denoising algorithms

Although an extensive variety of point cloud denoising algorithms has been pro-

posed, no single method performs consistently well on all degraded point clouds. For825

applications where a large set of heterogeneous noisy point clouds is processed, it is

preferable to optimize the denoising algorithm for each point cloud individually. How-

ever, it is not practical for a user to manually select a denoising algorithm for each

point cloud. Therefore, benchmarking point cloud denoising algorithms is of great im-

portance to yield the perceptually most satisfying result. However, to the best of our830

knowledge, no related work has been reported for this open challenge in the literature.

40



8. Conclusion

In this paper, we have made an earnest effort to give an up-to-date survey of

point cloud denoising techniques proposed in the past five years. These methods have

been mainly divided into three categories: filter-based, optimization-based, and deep835

learning-based methods. While it is nearly impossible to cover all of them, we have

covered each category with several representative methods. We have also reviewed

subjective and objective assessment metrics for evaluating the quality of denoised point

clouds. A comprehensive performance comparison of some representative or state-of-

the-art methods has been presented. Last but not least, we have discussed some open840

challenging issues and listed potential research directions.
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