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a b s t r a c t 

Process plant models mainly include 3D models and 2D engineering drawings. Matching calculation be- 

tween these CAD models has wide applicability in model consistency check and retrieval. In process plant, 

engineering design standards make 2D engineering drawing and 3D model differ in geometry, proportion 

and structure, leading to the inapplicability of current shape-feature based matching approaches. Since 

connection relationships between components are the core of a process plant, a topology based algorithm 

is proposed. Firstly, by exploiting components as vertices and relationships as edges, both 2D engineer- 

ing drawing and 3D model are preprocessed into graph structures. Then each model’s relationship types 

are extracted from the graph. Finally, regarding the extracted relationship types as primary feature, fea- 

ture similarity is calculated to measure the matching degree between their corresponding models. The 

proposed algorithm is geometric deformation invariant. Experiments with industrial applications are pre- 

sented, which demonstrates the effectiveness and feasibility of the proposed algorithm. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

2D engineering drawings and 3D models (2D & 3D) are crucial

ocuments in plant design and construction. In a timely fashion,

 process plant’s life cycle can be divided into planning, design,

onstruction, operation and disposal [1] . Thereinto, design stands

ut as the most important stage in ensuring the plant quality. In

his stage, designers should first construct a high-quality and inte-

rated 3D model according to the achievements of planning stage,

s shown in Fig. 1 . Then based on this 3D model, different types

f 2D engineering drawings are made as clear and precise guidance

or construction stage, as shown in Fig. 2 . 

An effective 2D & 3D matching calculation is imperative to im-

rove design quality and efficiency. The matching result not only

ontributes to model consistency check, but also benefits for model

etrieval. 

(1) With the increasing scale of process plant, the traditional

man-powered consistency check is becoming much more

time and effort consuming. Design consistency must be ver-

ified before construction in order to assure plant quality.
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Therefore, designers have to manually go through every de-

tail of components and relationships. Comparatively, an au-

tomatic 2D & 3D matching calculation can help designers to

improve consistency check efficiency. 

(2) The huge number of CAD models brings out the low effi-

ciency in model management. Take the large Chinese nu-

clear power project – Qinshan Nuclear Power Plant Project

for example, the number of CAD models is already up to

40,0 0 0 only in its second phase [2] . Due to the difficulty

of model text acquisition and lack of standardization, a file-

name based model retrieval can no longer meet enterprise-

level needs. Comparatively, content-based model retrieval

serves as a useful searching method through exploiting a

model’s internal characteristics. As the key point of model

retrieval, an effective matching calculation is necessary. 

Consequently, given a 2D engineering drawing and a 3D model,

ur goal is to automatically calculate their matching degree. 

Due to the engineering design standards, process plant 2D & 3D

atching calculation faces the following difficulties: 

(1) Geometry. A component can have various 2D geometries

which are irrelevant to its 3D shape projection. Graph-

ics library provides different graphical symbols for each

component according to the drawing type and engineering
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Fig. 1. A hydrocarbon plant model. 

Fig. 2. 2D engineering drawings. 
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attribute. That is to say, components with the same type

may be represented by different geometries. As a result, it is

difficult to build an exact correspondence between a compo-

nent’s 2D geometry and 3D shape. 

(2) Proportion. Geometric deformations may occur in non-scale

2D engineering drawings. Based on the usages of 2D en-

gineering drawings, some types of drawings (such as ISO

drawings) are disproportionate with their corresponding 3D

models. In order to improve the aesthetics and readability of

these drawings, pipelines should be properly zoomed in or

out according to the area’s density. Thus, different propor-

tion scales may lead to the significant differences between

2D engineering drawings and their 3D models. 

(3) Structure. The content structures that 2D engineering draw-

ings described could be global or partial structures of 3D

models. The uncertainty of content structures increases the

calculation complexity of this proposed problem. 

In conclusion, there still exists geometry, proportion and struc-

ture changes between 2D engineering drawings and 3D models,

even if they are derived from the same plant. Therefore, a success-

ful 2D & 3D matching method should handle the difficulties above.

In most cases, people prefer to differentiate models from their

appearances. Intuitively, lots of researchers tend to measure model

similarity from a shape perspective [3–8] . According to this, exist-

ing approaches calculate geometric similarity between 2D drawing
nd 3D model’s projection drawing to measure 2D & 3D match-

ng degree [9–14] . However, process plant models have variances

n geometry, proportion and structure. These variances lead to the

ignificant geometric differences between 2D engineering draw-

ng and 3D model’s projection drawing, thus making existing ap-

roaches inapplicable. 

Prior to this work, we have presented two researches on pro-

ess plant model similarity. The first research is a 3D model sim-

larity algorithm [15] . This algorithm is a global similarity study

ithin only 3D models. It aims to retrieve top- n similar models

rom existing model database, so as to ensure new model qual-

ty and guide future design. This algorithm constructs a tree struc-

ure to extract the distribution of a model’s relationships and mea-

ures the model similarity according to their relationship distri-

utions. The second research is a 2D & 3D matching algorithm

16] . This algorithm transforms a 2D drawing and a 3D model

nto graph structures and calculates their Min-edit Distance to

easure the 2D & 3D matching degree. However, this algorithm

resents some disadvantages in efficiency and stability, because

nsertion coordinate is the only feasible attribute allowed by the

lgorithm. 

The first contribution of this paper is the design of a frame-

ork that decomposes the proposed matching algorithm into three

arts: attribute graph construction, feature extraction and match-

ng calculation. 
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Fig. 3. A simple duality point and smart line based pipeline example. 
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• Attribute graph construction is fundamental of this framework.

Considering the aim of process plant is to construct the plant

layout [17] , the topology structures of a 3D model and its

2D engineering drawings should remain invariant. The geomet-

ric changes brought by proportion and component’s geometry

could be solved if the measure point lies on topology structure.

Intuitively, the 2D & 3D matching can take topology structure

as a starting point. Graph-based model similarity has a good

performance in measuring topology similarity [18–24] . Thus, we

seek to transform CAD models into attribute graphs and evalu-

ate 2D & 3D matching degree through their graph similarity.

In real engineering applications, 2D engineering drawings and

3D models are stored as parameterized structures in CAD doc-

uments [25] . We can make use of a CAD document to construct

a model’s attribute graph [26] . 
• Feature extraction is applied to measure graph similarity after

constructing attribute graphs. Common solutions of graph sim-

ilarity are Graph Edit Distance [27–29] and Maximum Common

Sub-graph [30] . However, their efficiency faces enormous chal-

lenge because computing the edit distance is NP-hard and max-

imal common sub-graph is also NP-complete. Therefore, feature

based solution is used in this paper. By applying the same fea-

ture extraction method to both graphs, each graph is repre-

sented by a set of features [31] . At this point, the problem of

graph similarity can be boiled down to feature similarity. 
• Matching calculation is imperative to compare the feature sim-

ilarity. As a 2D engineering drawing can be a global or partial

structure of its 3D model, an effective method should handle

these situations. 

The second contribution of this paper is the new feature extrac-

ion method. In this method, type attribute is regarded as a com-

onent’s primary identification, because designers usually differen-

iate components according to their types; connection relationship

ypes are used as a model’s feature, as CAD models’ relationships

ill be invariant as long as they belong to the same process plant.

he extraction method acquire a model’s feature by traversing each

odel’s relationships. 

The third contribution is the matching calculation method. First,

he criteria for determining whether a 2D engineering drawing and

 3D model matches are defined. Remember that a 3D model and

ts 2D drawings could differ in geometry, proportion and structure,

hese criteria should be able to handle all these situations. Then,

ased on each model’s topology feature and the criteria defined

bove, a matching calculation approach is presented to achieve the

imilarity assessment. In this approach, the model with less rela-

ionship types is chosen as reference. According to the reference

odel’s relationship types, the compared models’ unique feature

ectors can be acquired. Finally, 2D & 3D matching degree can be

alculated through the cosine value of feature vectors. Thus, the

roblem caused by different content structures can be efficiently

ypassed. 

The rest of this paper is organized as follows: domain char-

cteristics of 3D model and 2D engineering drawing in process

lant are introduced in Section 2 , with explanations of problem

dentification. Section 3 reviews related work in 2D & 3D match-

ng research, graph-based model similarity research and our previ-

us work. Section 4 gives an in-depth description of the proposed

ramework, followed by experiments and discussions in Section 5 .

n Section 6 , we summarize the whole paper with conclusions and

uture work. 

. Process plant models and problem identification 

Process plant is the set of reaction vessels, pipelines and

upports which are materials for making chemical or physical
anufactured products [32] . In this section, we will first give a

rief introduction to its 3D model and 2D engineering drawing. 

.1. 3D models 

Process plant 3D models should precisely describe every con-

ection relationship between components, as well as some design

onstraints. The ultimate goal of constructing 3D models is to gen-

rate different types of 2D engineering drawings for constructional

uidance. 

.1.1. Component 

Different from other grid or surface constituted models, a

uintessential plant model consists of hundreds of thousands of

omponents. These components include equipments, pipelines (i.e.

ipes and piping components), valves, instruments, etc. In more

etail, components in process plant are comprised of fourteen

asic entities: cylinder, scylinder, prism, econe, concone, squcir,

qucone, box, torus, squtorus, sphere, wedge, saddle and oval. 

.1.2. Connection relationship 

Connection relationship between components plays a crucial

ole in the accurate expression of topology structures. As illus-

rated in Fig. 3 , relationships are represented by the dual point

nd smart line based method [33] . In this method, dual points (the

lack dots in Fig. 3 ) attempt to describe component-wise topolo-

ies. Two components’ dual points will be coincident on the joint

nly if they have a connection relationship. Smart lines (the dot-

ed lines in Fig. 3 ) seek to build up the relational constraints be-

ween pipes and pipelines by abstracting them as 3D segments and

urves. 

.1.3. Engineering attribute 

Engineering attribute is essential to the precise descriptions

f components and relationships. It usually contains information

bout design constraints, engineering disciplines, etc. For example,

ype attribute stands out as a component’s unique identifier in en-

ineering databases; flow direction records a relationship’s liquid

irection; insertion coordinate, which can be considered as the ref-

rence coordinate of a relationship, is the coordinate of dual points

the black dots in Fig. 3 ) in 3D space. Other attributes, like mate-

ial, pipeline level, facing type, wall thickness, etc., fully describe

he plant and make it better understandable for builders. 

.2. 2D engineering drawings 

2D engineering drawings exploit 2D graphs as well as annota-

ions and illustrations to describe the details of a 3D model [2] .

or the status quo of engineering CAD development, designs still

argely remain in the form of 2D engineering drawings. 

To provide clear guidance for construction, 2D engineering

rawings are divided into various types based on the main usage,

uch as piping layout drawing, equipment layout drawing, connec-

ion orientation drawing, ISO drawing. Meanwhile, to improve the

esthetics and readability, engineering design standards are estab-

ished by related industry associations, leading to the particular

roperties of 2D engineering drawings. 

First, a component can have various 2D geometric descriptions.

raphics library is usually introduced to define graphical symbols
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Fig. 4. Different graphical symbols of components. 

Fig. 5. The zoomed-in views of different drawings. Drawings in (a), (b) and (c) come from the same plant. (a) and (b) describe the same location of the plant. 
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for each component type. As Fig. 4 illustrates, different connection

modes (such as butt weld and flanged connections) are assigned

with corresponding symbols. In other words, components with the

same type may be represented by different graphical symbols. 

Second, a plant’s 2D engineering drawings may vary with dif-

ferent projection methods. Besides the well-known proportional

projection, some types of drawings are non-scale projections of

3D models. Take the ISO drawing illustrated in Fig. 2 (b) for ex-

ample, this type of drawings is the isometric projection of pipe

systems. For guiding purpose, complex relationships and related

annotations should be clearly described in a limited plane. Con-

sequently, practical construction and engineering design standards

allow ISO drawing to be non-scale and components to be properly

deformed. 

Last, a plant’s 2D engineering drawings could differ in content

structure. Fig. 2 gives two instances which are derived from the

same 3D model, as are a pipeline plane drawing and an ISO draw-

ing. The pipeline plane drawing describes a plant’s global structure

and the ISO drawing describes a partial structure of interest. 

2.3. Problem identification 

The variances in geometry, proportion and structure make pro-

cess plant 2D & 3D matching difficult. Geometric differences still

exist between 2D engineering drawing and 3D model’s projec-

tion drawing even if they come from the same plant. These dif-

ferences lead to the inapplicability of existing 2D & 3D matching

approaches. 

First of all, a component’s 2D geometry is not the direct pro-

jection of its real 3D shape, but the graphical symbols prescribed

by graphics library. For example, Fig. 5 (a) and (b) are the zoomed-

in views of a 3D model’s projection drawing and plane drawing

respectively. Obviously, the geometric descriptions of components
n Fig. 5 (b) have differences with their 3D shape projections in

ig. 5 (a). 

Then, the non-scale projection leads to the geometric deforma-

ions of components. Some specified types of drawings aim to de-

icting the relative relations (i.e., topology) between pipes. In or-

er to improve their aesthetics and readability, engineering design

tandards permit some necessary and proper deformations. Take

ig. 5 (c) for example, the components in this drawing have been

ignificantly deformed even though it is a drawing of 3D model in

ig. 5 (a). 

Moreover, differences in content structures further add to the

omplexity of 2D & 3D matching problem. Some types of draw-

ngs describe a global structure to overview a plant’s layout. Some

ypes of drawings describe a plant’s partial structure to introduce

he local detail. 

. Related work 

There have been several branches in 2D & 3D matching re-

earch, mostly regarding general models and product CAD models.

e summarize some accepted typical methodologies in this sec-

ion. 

.1. 2D & 3D Matching for general models 

General models are models that human can make contact with

n daily life, such as furniture models, animal models, etc. Their

D & 3D matching research focuses largely on geometric feature

easures, as they are all built-up with triangular meshes [18] . 

Wang et al. [9] present a view-based discriminative probabilis-

ic modeling for 3D object retrieval. Based on the distribution of

iews, they first build probabilistic models for each object; sec-

ndly, the distance between two objects is defined as the upper
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ound of the Kullback–Leibler divergence of the corresponding

robabilistic models; lastly, 3D object retrieval and recognition is

ccomplished according to the distance calculations. 

Min et al. [10] propose a single depth image based 3D model

etrieval method. In their effort, 3D models are represented by

ultiple depth images acquired from adaptively sampled view-

oints. A single depth image, which can be easily captured with an

ff-the-shelf low-cost 3D camera, is used as the input query. Their

roposed algorithm can retrieve relevant 3D models while consid-

ring local 3D geometric characteristics using a rotation-invariant

eature descriptor. 

Lahner et al. [11] present a non-rigid 2D-to-3D shape matching

lgorithm. This algorithm’s input are a 2D shape represented as a

lanar curve and a 3D shape represented as a surface. The output

s a continuous curve on the surface. They solve the problem by

nding the shortest circular path on the product 3-manifold of the

urface and the curve. 

The techniques above represent 3D models by probabilistic

odels or images from different viewpoints and measure the

hape similarity from a geometric perspective. In the meantime,

ome other researches are inspired by model’s topology. For exam-

le, Waleed et al. [12] introduce a skeletonization algorithm which

tilizes a normalized mixture distance function to encode a 3D

hape into a topological Reeb graph. In addition, they also propose

 novel graph matching algorithm by comparing the relative short-

st paths between the skeleton endpoints. 

.2. 2D & 3D Matching for product CAD models 

Product CAD models focus on the geometric descriptions of me-

hanical products, electrical and electronic products. Because prod-

ct CAD models are mainly comprised of curves and surfaces, their

etrieval system concentrates on the research of surface feature

omputation, free-form surface parameterization and mechanical

pecific standardization. 

Li et al. [13] retrieve 3D product CAD models using 2D im-

ges with optimized weights. First, the Pyramid Histogram of Ori-

nted Gradients (PHOG) descriptor is employed to describe the 2D

mages projected from a model. Then, Lagrange multipliers, vec-

or quantization and a Support Vector Machine (SVM) are used to

daptively assign an optimal weight to each projected image. 

Pu et al. [14] present a sketch user interface enhanced by feed-

ack for 3D product CAD model retrieval. Through this method,

sers can not only emphasize some shapes by specifying weights

or views, but also do some editing operation on the views ob-

ained from the retrieved models. Thus, users can express their in-

ent by sketching 2D shape in the way as engineers draw three

iews of 3D models. The whole retrieval process forms a loop by

hich users can refine the search results step by step. 

Based on subgraph isomorphism, Huang et al. [34] introduce

 matching algorithm between precursory 3D process model and

D working procedure drawing. Firstly, they obtain the projec-

ion drawing of the precursory 3D process model; then extract the

rimitives and construct the attributed adjacency graph; finally, by

aking the 2D working procedure drawing and projection drawing

s the attributed adjacency graphs, the matching problem between

recursory 3D process model and 2D working procedure drawing

s translated into the problem of subgraph isomorphism. 

In conclusion, the 2D & 3D matching approaches above pay

ost of their attentions to shape-feature similarity. Basically, these

esearches can be roughly summarized into three steps [35] : 

(1) acquire the 3D model’s projection drawing from the same

viewpoint with the compared 2D drawing; 

(2) apply shape feature extraction to both drawings; 
(3) calculate shape feature similarity to measure the matching

degree between the compared 2D drawing and 3D model. 

Noticeably, these approaches have a strong assumption on step

1). However, engineering design standards may change the com-

onent’s 2D appearance, making it irrelevant from its 3D shape

rojection. Therefore, these shape-feature based approaches cannot

olve the proposed problem. 

.3. Graph-based model similarity 

Graph-based similarity is extensively used in model retrieval

rea due to its inherent ability in describing model topology. Algo-

ithms of this category are dedicated to transforming the research

arget into a graph structure and seek to measure model similarity

hrough their corresponding graphs. 

Sundar et al. [19] propose a skeleton based method for compar-

ng 3D objects. This method encodes the geometric and topological

nformation in the form of a skeletal graph and uses graph match-

ng techniques to match the skeletons and to compare them. First,

hey compute the skeletal graph from the volumetric object. Then,

hey store along with the graph, the topological signature vector

f the graph, which is a low-dimensional index that captures both

he local and global structural properties. Last, the object similarity

an be calculated according to their topological signature vectors. 

Ayellet et al. [20] present a mesh retrieval method by compo-

ents. Their key idea is to represent an object by an attributed

raph that consists of the objects meaningful components as

odes, where each node is fit to a basic shape. Accordingly, given a

atabase of meshes in a standard representation consisting of ver-

ices, faces and one specific object O , the goal is to retrieve from

he database objects similar to O . To retrieve the similar objects,

hey calculate the edit distance between attributed graphs to mea-

ure the corresponding object similarity. 

Demirci et al. [21] propose an approach for indexing multime-

ia databases in which entries can be represented as graph struc-

ures. In this study, the topological structure of a graph as well as

hat of its subgraphs are represented as vectors whose components

orrespond to the sorted laplacian eigenvalues of the graph or sub-

raphs. Since the laplacian spectrum is used as a graph signature,

 high level of uniqueness is maintained. Therefore, they compare

hese signatures of a large number of graphs without solving the

omputationally expensive correspondence problem between their 

ertices. 

By using both topological and geometric features at the same

ime, Gary et al. [22] propose Topological Point Ring (TPR) analy-

is to locate reliable topological points and rings firstly. Then, they

apture both local and global geometric information to character-

ze each of these topological features. To compare the similarity

f two models, they adapt the Earth Mover Distance (EMD) as the

istance function and construct an indexing tree to accelerate the

etrieval process. 

Shapira et al. [23] present a framework which automatically

nds part analogies among 3D objects. This method first partitions

 given 3D object to create a part hierarchy, and then defines a sig-

ature for each part. Using these signatures they define an effec-

ive context-aware distance measure that can find analogous parts

mong other objects, which are not necessarily similar as a whole.

Kleiman [24] present shape edit distance (SHED) that measures

he amount of effort needed to transform one shape into the other.

he shape edit distance takes into account both the similarity of

he overall shape structure and the similarity of individual parts of

he shapes. 

Obviously, the algorithms above also emphasize on shape-

eature similarity. Their ideas can be summarized as follows: 
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Fig. 6. Algorithm diagram. 
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(1) decompose a model into substructures and represent these

substructures by a graph’s vertices; 

(2) extract geometric or topological features of the substructures

and regard the features as the vertices’ attributes; 

(3) calculate attribute graph similarity to measure the corre-

sponding model similarity. 

However, these algorithms are inapplicable in process plant 2D

& 3D matching calculation. On one hand, it is difficult to build an

actual correspondence between a component’s 2D and 3D shapes.

A component can have various graphical symbols as introduced in

Section 2.2 . That is to say, in a 2D engineering drawing, compo-

nents with the same type may be represented by different shapes.

On the other hand, a 2D engineering drawing and its 3D model’s

projection drawing can differ in appearance and content structure,

making it hard to compare 2D & 3D shape similarity. Even so, the

idea that transforming a model into an attribute graph can still

make contributions to solving the proposed problem. 

3.4. Our previous work 

Prior to this work, several process plant model similarity re-

searches have been conducted by our team. A similarity measure-

ment centered in homogeneous 3D model is proposed in [15] .

This algorithm can help to find the intermediate 3D models gen-

erated during the collaborative design process. The retrieved mod-

els are rewarding for the following procedure to avoid unneces-

sarily repeated design. In this work, a tree model for extracting

relationship distribution is first proposed. Second, standardization

is performed via mapping relationship statistics into vector space

to achieve the comparable feature vector. Last, a hybrid similarity

function combining both directional and numerical differences in

feature vectors is proposed to evaluate 3D model similarity. 

Besides 3D model similarity, heterogeneous 2D & 3D matching

is also important in process plant as explained in Section 1 . Their

global or partial similarity can help to determine whether they

come from the same process plant, so as to verify model coherency

and enhance management efficiency. To tackle this problem, a 2D

& 3D matching algorithm using Min-Edit Distance is presented in

[16] . However, it presents some disadvantages in efficiency and sta-

bility. Here we give a brief discussion. 

Min-Edit Distance [27,28] is a common solution of graph simi-

larity. In general, graph similarity can be roughly divided into pre-

cise measurement and error-tolerant measurement [29] , each with

a representative solution of Max-Common Sub-graph and Min-Edit

Distance. Bunke puts forward in [36] that given a certain cost func-

tion, Min-Edit Distance will become equivalent to Max-Common

Sub-graph [30] . As Edit Distance is defined within a common the-

oretical framework 1 , it is actually a quite flexible method and has

been successfully applied to model similarity field [20,24,37] . So as

a natural choice, this algorithm seeks to compare 2D & 3D match-

ing degree based on Min-Edit Distance by transforming CAD mod-

els into attribute graphs. 

One major disadvantage of this Min-Edit Distance based algo-

rithm is: within various attributes in a relationship, insertion coor-

dinate is the only feasible attribute allowed by the algorithm. Dif-

ferent relationships’ insertion coordinates can hardly coincide in a

3D space, hence the correspondent relationships are easy to find

out. However, once coordinate information go awry (e.g., rotation,

translation), or in some cases it is simply not the deciding measure

emphasis, this algorithm would fail. 
1 The min-edit distance between graph G 1 and G 2 is the minimum number of 

operations to transform G 1 into G ′ 1 such that G ′ 1 = G 2 . The primitive edit operations 

on a graph include insert an isolated vertex with label, delete an isolated vertex, 

substitute a vertex label, insert an edge between two vertices, delete an edge and 

substitute an edge label. 

t  

s

Koutra concludes another solution to compare graph similar-

ty in [31] , that is applying the same feature extraction method

o both graphs, and feature based difference is then used against

raph similarity. In this solution, feature extraction and similarity

alculation are the major challenges. Inspired by this solution, we

an commence by extracting a model’s topology feature, followed

y calculating feature similarity to measure the matching degree

etween their corresponding models. 

. Algorithm detail 

.1. Overview 

Process plant has a strong emphasis on the accurate topology

xpression between components. CAD models’ topology structures

ill be consistent as long as they belong to the same process plant,

ven though they may differ in lots of aspects (as mentioned in

ection 2.3 ). More importantly, this rule also applies even in dif-

erent dimensional representations. Intuitively, we can measure 2D

 3D matching degree from a topology perspective. 

By representing components as vertices and relationships as

dges, a plant model can be transformed into a topological struc-

ure, which is indeed an attribute graph. In the meantime, relation-

hip types can be further regarded as a model’s topology feature.

o a topology based 2D & 3D matching algorithm is proposed in

his paper. As illustrated in Fig. 6 , this algorithm has three primary

teps: 

(1) attribute graph construction; 

(2) relationship type extraction; 
(3) matching calculation. 
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Fig. 7. The parameterized structure of a component. 
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In the first step, geometric variations brought by proportion

nd components’ geometries can be bypassed through transform-

ng CAD models into attribute graphs. In the second step, the prob-

em of graph similarity falls into feature similarity by regarding ex-

racted relationship types as a model’s topology feature. In the last

tep, the problem caused by different structures can be resolved by

sing the model with less relationship types as reference. 

.2. Attribute graph construction 

In real engineering applications, 2D engineering drawings and

D models are stored as parameterized structures in CAD docu-

ents. Without loss of generality, a component can be described

s Fig. 7 shows: 

• Handle is a dynamically generated variable utilized by a CAD

file and our program to fast and uniquely access a component.

To be emphasized, handle is not an engineering attribute of

process plant and merely unique in a single file scope. 
• Type is the unique identifier for designers to distinguish differ-

ent components in engineering databases. It is one of the engi-

neering attributes in process plant. 
• Coordinate is the coordinate of the current component in 3D

space. 
• Connections records the handles of components which has

connection relationships with the current component. 
• InsertionCoordinates records the reference coordinates of con-

nection relationships. As shown in Fig. 3 , the dual points (the

black dots in Fig. 3 ) will be coincident on the joint if two com-

ponents are inter-connected. The insertion coordinate here is

the coordinate of either dual point in 3D space. This variable

”InsertionCoordinates” is the list of all insertion coordinates re- 

lated to the current component. 

Therefore, we can make use of a CAD document to construct a

odel’s attribute graph. 

The procedure of attribute graph construction is conducted as

ollows. First, we extract all components’ handles from the CAD

ocument. Then, each component’s attribute values are achieved

ccording to its handle. At last, we add each handle h i into a graph

s a vertex and its engineering attribute as the vertex’s attribute.

or each handle h j in Connections , we add an edge between h i and

 j . At this point, the whole procedure of attribute graph construc-

ion is completed. 

A process plant model can be transformed into an attribute

raph accordingly, expressing as 

 = { C , R } , (1) 

here C = { c 1 , c 2 , . . . , c n } is the component set and R =
 r 1 , r 2 , . . . , r m 

} is the connection relationship set. More specifi-

ally, a connection relationship r ( c i , c j ) ∈ R can be represented as

( c i , c j ) = ( c i , c j , A ( c i , c j )) , (2)

here A ( c i , c j ) is the engineering attribute of relationship r ( c i , c j ). 
2D & 3D models are represented by the same attribute collec-

ion through extracting their common attributes. Geometric infor-

ation is totally discarded during this procedure, thus effectively

ypassing the variances in geometry and proportion. For now, pro-

ess plant 2D & 3D matching degree can be measured by their at-

ribute graphs. 

.3. Relationship type extraction 

We propose to exploit type attribute as a component’s primary

dentification. During design procedure, type attribute plays a crit-

cal role for designers to differentiate com ponents. Thus, assuming

 ( x ) is the function to get the type of component x , a relationship

ype rt ( c i , c j ) can be expressed as 

t( c i , c j ) = (T ( c i ) , T ( c j ) , A ( c i , c j )) , (3)

here T ( c i ) and T ( c j ) are the types of component c i and c j , A ( c i , c j )

s the engineering attribute value of relationship r ( c i , c j ). 

Through traversing each model’s relationships, all relationship

ypes are extracted as a model’s feature and recorded into set S .

hus, a complex CAD model is represented as a set of topology

eatures and the problem of model similarity is boiled down to

eature comparison. 

.4. Matching calculation 

A 2D engineering drawing could be a global or partial descrip-

ion of a process plant. In light of this, the proposed 2D & 3D

atching faces several special situations, listed as follows: 

(1) If the connection relationships of a 2D engineering draw-

ing and a 3D model are completely similar, which in other

words means they share an identical topology structure,

consider them a match; 

(2) If partially similar, which indicates the 2D drawing may be a

partial description of the 3D model, consider them a match

as well; 

(3) If satisfies neither (1) or (2), consider them unmatched. 

In our work, these situations are used as criteria for judging

hether a 2D drawing and a 3D model is matched. 

Algorithm 1 gives the details of matching calculation. Assum-

ng S 3 D and S 2 D are the relationship type sets of 3D model M 3 D 

nd 2D engineering drawing M 2 D respectively. In order to deter-

ine both partial and global matching likelihood at one shot, we

se the model with less relationship types as reference and the

ther model as target. Let length be the smaller size between S 3 D 
nd S 2 D , V ref and V tar are the feature vectors of reference and

arget model, both with a length of length and initialized to be

 filled. In order to generate comparable feature vectors, we tra-

erse every relationship type rt in the reference model and set

ach component value V ref [ i ] ( i = 1 , 2 , . . . , length ) to 1. Meanwhile,

f the target model also contains rt , its vector entry V tar [ i ] is set to

 as well. Once the traversal is completed, two compared models

re represented by feature vectors V re f = ( x 1 , x 2 , . . . , x length ) and

 tar = ( y 1 , y 2 , . . . , y length ) . Each index in the feature vector repre-

ents a certain relationship type, with the value indicating whether

t exists in the corresponding model. At this point, V ref and V tar 

ould be input into any similarity metric at hand. 

Here we use cosine to cope with binary numbers [38,39] , re-

ulting in the following equation: 

os ( V re f , V tar ) = 

length ∑ 

i =1 

x i · y i √ 

length ∑ 

i =1 

x 2 
i 

·
length ∑ 

i =1 

y 2 
i 

. (4) 
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Fig. 8. Model instances. Edges describe relationships and vertices (identified by type attribute) describe components. 

Table 1 

Feature vectors of models in Fig. 8 . 

rt ( A, B ) rt ( A, C ) rt ( C, D ) rt ( B, D ) rt ( C, E ) rt ( D, E ) rt ( D, F ) rt ( D, G ) rt ( C, F ) rt ( E, F ) 

S G q � � � � � � � � 

S G 1 � � � � � � � � 

S G 2 � � � � � � 

S G 3 � � � � � � � � 

V G q 1 1 1 1 1 1 1 1 

V G 1 1 1 1 1 1 1 1 1 

V G q 1 1 1 1 1 1 

V G 2 1 1 1 1 1 1 

V G q 1 1 1 1 1 1 1 1 

V G 3 1 1 1 1 0 0 1 1 

Algorithm 1 Matching calculation. 

Require: 

M 3 D ’s relationship type set S 3 D ; 

M 2 D ’s relationship type set S 2 D ; 

Ensure: 

Matching degree sim ( M 3 D , M 2 D ) ; 

1: if | S 2 D | ≤ | S 3 D | then 

2: length = | S 2 D | ; 
3: S re f = S 2 D ; 

4: S tar = S 3 D ; 

5: else 

6: length = | S 3 D | ; 
7: S re f = S 3 D ; 

8: S tar = S 2 D ; 

9: end if 

10: V re f = [ 0 for i from 1 to length ] ; 

11: V tar = [ 0 for i from 1 to length ] ; 

12: i = 1 ; 

13: for all rt ∈ S re f do 

14: V re f [ i ] = 1 ; 

15: if rt ∈ S tar then 

16: V tar [ i ] = 1 ; 

17: end if 

18: i + + ; 

19: end for 

20: sim ( M 3 D , M 2 D ) = cos (V re f , V tar ) ; 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

a  

a  

d  

2  

3  

c  

g  

a  

d  

s  

s

5

 

V  

(  

i  

t  

t

5

 

t  

a  

T

 

 

Finally, the feature similarity between reference model and target

model (as well as the matching degree between 2D drawing and

3D model) can be calculated. 

Fig. 8 and Table 1 give the visualization and statistics of a cal-

culation example. According to Eq. (1) , graphs in Fig. 8 are the at-

tribute graph representations of process plant models, whose fea-

ture vectors are presented in Table 1 . Based on Algorithm 1 , we

have the following results: 

• | S G q | = | S G 1 | = 8 , so either of M G q or M G 1 
can be the ref-

erence model. Their matching degree is sim ( M G q , M G 1 
) =

cos ( V G q , V G 1 
) = 1 . 0 ; 
• | S G q | = 8 > | S G 2 | = 6 , so M G 2 
should be the reference model.

According to M G 2 
’s relationship types, sim ( M G q , M G 2 

) =
cos ( V G q , V G 2 

) = 1 . 0 ; 
• | S G q | = | S G 3 | = 8 , so either of M G q or M G 3 

can be the ref-

erence model. Their matching degree is sim ( M G q , M G 3 
) =

cos ( V G q , V G 3 
) = 0 . 75 . 

. Experiments and discussions 

This section will give a validity verification and discussion

bout our algorithm. Details about our experimental platform are

n Intel dual core 2.1 GHz CPU and 3G memory laptop. Our model

atabase includes 2340 pairs of matched 2D & 3D models and

340 pairs of unmatched 2D & 3D models. Figs. 9 –15 show some

D models and 2D engineering drawings of the database. A typi-

al 3D plant model can generate hundreds of thousands of 2D en-

ineering drawings. For visualization purpose, we randomly select

nd display a few of them here. All experiments are strictly con-

ucted as described in Section 4 . Attribute graph statistics are de-

cribed in Section 5.1 , followed by showcases of the matching re-

ults in Section 5.2 . 

.1. Attribute graph statistics 

Taking CAD documents as input, we use PDSOFT® 3Dpiping and

isual Studio 2008 to automatically extract a model’s information

e.g., components, connection relationships, etc.) and transform it

nto an attribute graph. In Table 2 , some graph statistics of the ex-

racted 3D models and 2D drawings are presented, including model

ypes and sizes of their components and relationships. 

.2. Matching results 

After constructing attribute graphs, we extract relationship

ypes by using flow direction and insertion coordinate as the

ttribute respectively. Based on the extracted relationship types,

ables 3 and 4 list some of matching results. 

Digging into results in Tables 3 and 4 , we can conclude that: 

(1) The proposed algorithm can still evaluate whether 2D en-

gineering drawings and 3D models share a common source
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Table 2 

Attribute graph statistics. 

Model Type Components | C | Relationships | R | 
M1 ( Fig. 9 (a)) 3D model 395 393 

M2 ( Fig. 9 (b)) 3D model 9795 9728 

M3 ( Fig. 9 (c)) 3D model 22,596 22,740 

M4 ( Fig. 1 ) 3D model 41,569 41,968 

D1 ( Fig. 2 (a)) Plane drawing of M1 395 393 

D2 ( Fig. 2 (b)) ISO drawing of M1 35 33 

D3 ( Fig. 10 (a)) ISO drawing of M1 67 61 

D4 ( Fig. 10 (b)) ISO drawing of M1 71 70 

D5 ( Fig. 10 (c)) ISO drawing of M1 80 79 

D6 ( Fig. 10 (d)) ISO drawing of M1 111 107 

D7 ( Fig. 11 ) Plane drawing of M2 9795 9728 

D8 ( Fig. 12 (a)) ISO drawing of M2 34 25 

D9 ( Fig. 12 (b)) ISO drawing of M2 55 53 

D10 ( Fig. 12 (c)) ISO drawing of M2 68 33 

D11 ( Fig. 12 (d)) ISO drawing of M2 71 64 

D12 ( Fig. 13 ) Section drawing of M3 22,596 22,740 

D13 ( Fig. 14 (a)) ISO drawing of M3 20 21 

D14 ( Fig. 14 (b)) ISO drawing of M3 22 23 

D15 ( Fig. 14 (c)) ISO drawing of M3 35 35 

D16 ( Fig. 14 (d)) ISO drawing of M3 84 87 

D17 ( Fig. 15 (a)) ISO drawing of M4 37 36 

D18 ( Fig. 15 (b)) ISO drawing of M4 42 41 

D19 ( Fig. 15 (c)) ISO drawing of M4 55 55 

D20 ( Fig. 15 (d)) ISO drawing of M4 103 102 

Table 3 

Matching results with flow direction. 

3D model M 3 D 2D drawing M 2 D Ground truth sim ( M 2 D , M 3 D ) Extraction time Matching time 

M1 D1 Complete Match 1.0 243.6 ms 9.4 ms 

D3 Partial Match 1.0 140.4 ms 0 ms 

D4 Partial Match 1.0 136.8 ms 0 ms 

D5 Partial Match 1.0 168.4 ms 0 ms 

D6 Partial Match 1.0 143.6 ms 6.2 ms 

D7 Unmatch 0.382971 2,748.6 ms 18.4 ms 

D8 Unmatch 0.654654 118.4 ms 6.4 ms 

D12 Unmatch 0.447214 8,109.0 ms 15.6 ms 

D13 Unmatch 0.458831 118.8 ms 6.2 ms 

D17 Unmatch 0 128.2 ms 6.2 ms 

M2 D7 Complete Match 1.0 5,235.2 ms 6.2 ms 

D8 Partial Match 1.0 2,624.0 ms 15.8 ms 

D9 Partial Match 1.0 2,717.4 ms 15.8 ms 

D10 Partial Match 1.0 2,653.2 ms 15.6 ms 

D11 Partial Match 1.0 2,644.2 ms 15.8 ms 

D1 Unmatch 0.382971 2,739.2 ms 12.6 ms 

D3 Unmatch 0.527046 2,617.6 ms 12.2 ms 

D12 Unmatch 0 15,309.8 ms 1,133.0 ms 

D13 Unmatch 0.39736 2,617.8 ms 12.4 ms 

D17 Unmatch 0.227314 9,740.4 ms 15.6 ms 

M3 D12 Complete Match 1.0 12,723.2 ms 15.8 ms 

D13 Partial Match 0.945905 7,821.8 ms 15.8 ms 

D14 Partial Match 0.919866 7,871.6 ms 15.6 ms 

D15 Partial Match 0.981307 7,743.8 ms 15.6 ms 

D16 Partial Match 0.971008 7,715.4 ms 15.8 ms 

D1 Unmatch 0.447214 8,077.6 ms 15.8 ms 

D3 Unmatch 0.707107 7,747 ms 15.6 ms 

D7 Unmatch 0.227314 9,590.8 ms 25.2 ms 

D8 Unmatch 0.534522 7,903.0 ms 12.4 ms 

D17 Unmatch 0 7,709.6 ms 15.6 ms 

M4 D17 Partial Match 1.0 11,793.8 ms 62.2 ms 

D18 Partial Match 0.9759 11,681.4 ms 65.6 ms 

D19 Partial Match 0.974679 11,609.4 ms 62.8 ms 

D20 Partial Match 0.975305 11,637.4 ms 62.8 ms 

D1 Unmatch 0.34641 11,663.0 ms 62.4 ms 

D3 Unmatch 0.333333 11,469.2 ms 65.6 ms 

D7 Unmatch 0.123278 15,943.4 ms 78.0 ms 

D8 Unmatch 0.377964 11,740.8 ms 65.6 ms 

D12 Unmatch 0.115912 18,698.0 ms 78.0 ms 

D13 Unmatch 0 11,491.4 ms 68.8 ms 
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Fig. 9. Process plant 3D models. 

Fig. 10. ISO drawings of 3D model in Fig. 9 (a). These drawings describe the different pipelines which come from the same plant. 

Fig. 11. Plane drawing without annotations and illustrations of 3D model in Fig. 9 (b). 
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plant, even they have differences in content structure. In

Tables 3 and 4 , high similarities are observed in both par-

tial matched pairs and complete matched pairs. 

(2) Differences in graphical representation do not affect our

experimental results. Even though the graphical represen-

tations of 2D drawings and 3D models are different, the

matching results in Tables 3 and 4 are realistic; 

(3) Our algorithm can recognize unmatched models. As in-

dicated in Table 2 , D1 is not a 2D drawing of 3D

model M2. Accordingly, their matching result in Table 4 is

sim (M2 , D 1) = 0 . 

(4) Most calculation time of our experiment lies in a proper

range. Both the extraction and matching calculation in

Table 3 and Table 4 are finished within an acceptable time. 

5.3. Performance analysis 

We first introduce a group of terms and metrics before giving

any quantitative analysis. 
• True Positives (TP) are positive samples that are correctly la-

beled as positives. 
• False Positives (FP) are negative samples that are incorrectly la-

beled as positive. 
• False Negatives (FN) are positive samples that are incorrectly

labeled as negative. 
• True Negatives (TN) are negative samples that are correctly la-

beled as negative. 

Recall is the proportion of positive samples that are correctly

abeled. It measures an algorithm’s ability in recognizing the rare

ositive samples (because they are the ones we care most about).

t is defined as 

ecall = 

TP 

TP + FN 

. (5)

ccuracy is the proportion of all samples that are correctly la-

eled. It measures an algorithm’s ability in classification among all
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Fig. 12. ISO drawings of 3D model in Fig. 9 (b). 

Fig. 13. Plane drawing without annotations and illustrations of 3D model in Fig. 9 (c). 

Fig. 14. ISO drawings of 3D model in Fig. 9 (c). 

Fig. 15. ISO drawings of 3D model in Fig. 1 . 
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Table 4 

Matching results with insertion coordinate. 

3D model M 3 D 2D drawing M 2 D Ground truth sim ( M 2 D , M 3 D ) Extraction time Matching time 

M1 D1 Complete Match 1.0 306.0 ms 15.8 ms 

D2 Partial Match 1.0 171.6 ms 15.6 ms 

D3 Partial Match 1.0 175.0 ms 12.4 ms 

D4 Partial Match 1.0 178.0 ms 9.6 ms 

D5 Partial Match 1.0 199.6 ms 15.8 ms 

D6 Partial Match 1.0 193.4 ms 15.8 ms 

D7 Unmatch 0 4,377.4 ms 330.6 ms 

D8 Unmatch 0 175.0 ms 15.4 ms 

D12 Unmatch 0 8,966.6 ms 270.4 ms 

D13 Unmatch 0 149.2 ms 15.2 ms 

D17 Unmatch 0 183.8 ms 15.8 ms 

M2 D7 Complete Match 1.0 7,605.2 ms 327.6 ms 

D8 Partial Match 1.0 4,106.2 ms 302.4 ms 

D9 Partial Match 1.0 4,134.2 ms 302.8 ms 

D10 Partial Match 1.0 4,162.0 ms 302.8 ms 

D11 Partial Match 1.0 4,140.4 ms 299.6 ms 

D1 Unmatch 0 4,395.8 ms 334.0 ms 

D2 Unmatch 0 4,121.4 ms 308.8 ms 

D12 Unmatch 0 15,309.8 ms 1,133.0 ms 

D13 Unmatch 0 4,124.4 ms 296.4 ms 

D17 Unmatch 0 4,102.8 ms 305.8 ms 

M3 D12 Complete Match 1.0 18,692.2 ms 830.0 ms 

D13 Partial Match 1.0 10,137.2 ms 767.6 ms 

D14 Partial Match 0.955533 10,121.6 ms 773.8 ms 

D15 Partial Match 0.985611 10,162.2 ms 764.2 ms 

D16 Partial Match 1.0 10,171.0 ms 764.8 ms 

D1 Unmatch 0 10,527.0 ms 801.8 ms 

D2 Unmatch 0 10,186.8 ms 780.0 ms 

D7 Unmatch 0 14,886.0 ms 1,141.8 ms 

D8 Unmatch 0 10,149.2 ms 770.6 ms 

D17 Unmatch 0 10,127.6 ms 767.4 ms 

M4 D17 Partial Match 1.0 19,575.2 ms 1,488.2 ms 

D18 Partial Match 1.0 19,992.8 ms 1,547.4 ms 

D19 Partial Match 1.0 19,771.4 ms 1,538.0 ms 

D20 Partial Match 1.0 19,596.8 ms 1,519.4 ms 

D1 Unmatch 0 19,770.6 ms 1,556.8 ms 

D2 Unmatch 0 19,522.0 ms 1,510.0 ms 

D7 Unmatch 0 24,532.8 ms 1,890.6 ms 

D8 Unmatch 0 19,615.6 ms 1,532.0 ms 

D12 Unmatch 0 30,963.2 ms 2,421.2 ms 

D13 Unmatch 0 20,002.4 ms 1,497.2 ms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

The confusion matrix of our matching results. The relationship type’s attribute is 

insertion coordinate and ϕ = 0 . 8 . 

Predicted 

Negative Positive 

Actual Negative 2340 (TN) 0 (FP) 

Positive 10 (FN) 2330 (TP) 
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h

5
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g  

m  
classes, i.e., to tell positive from negative. It is defined as 

Accuracy = 

TP + TN 

TP + TN + FP + FN 

. (6)

Precision is the proportion of samples classified as positive that are

also truly positive. Different from accuracy, it only measures an al-

gorithm’s classification ability for the positive class. It is defined as

Precision = 

TP 

TP + FP 

. (7)

Now given a threshold ϕ, we consider M 2 D matches with M 3 D 

if sim ( M 2 D , M 3 D ) ≥ ϕ. The ϕ-recall/accuracy curves with different

attributes are shown in Fig. 16 . We can have a clear visualization

on how the metrics fluctuate with different ϕ. In our experiment,

both accuracy and recall peak near ϕ = 0 . 8 in all these figures. In

real-world applications, we can use a validation dataset to deter-

mine the value of ϕ that yields the best performance. 

For comparison, this proposed algorithm has a clear perfor-

mance advantage over the Min-Edit Distance based algorithm

[16] according to the recall-precision curves in Fig. 17 . An ideal

recall-precision curve leads to be in the upper-right-hand corner

[40] . Apparently, both recall-precision curves of this work (the blue

lines) are consistently in conformity with that trend, no matter

what attribute is being used. The curve of Min-Edit Distance based

algorithm is also in the upper-right-hand corner when using inser-

tion coordinate as attribute. However, it tends to be in the lower-

left-hand corner when attribute is flow direction. In this case, the
hoice of attribute can greatly affect the final performance. Some-

imes we may even have to spare huge human effort s to decide

hich attributes are feasible, resulting in undoubted low efficiency.

For quantitative analysis, Table 5 lists the confusion matrix of

atching results with insertion coordinate when ϕ = 0 . 8 . Recall

nd accuracy are 99.6% and 99.8%, respectively according to this

able. These statistics suggest that our experimental results are

ostly in accordance with the ground truth. 

In conclusion, performance of the proposed work in this study

as a remarkable improvement in terms of flexibility and stability. 

.4. Discussions 

.4.1. Attribute selection 

The choice of attribute in Eq. (3) influences the matching de-

rees. Table 6 shows the quantities of relationship types for each

odel by using insertion coordinate and flow direction as attribute
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Fig. 16. ϕ-recall/accuracy curves with different attributes. 

Fig. 17. Recall-precision curves of our work and the Min-Edit Distance based algorithm with different attributes. 

Table 6 

Statistics of relationship types. 

Model Relationships | R | Relationship types | S | 
Insertion coordinate Flow direction 

M1 393 393 75 

M2 9728 9728 329 

M3 22,740 22,740 521 

M4 41,968 41968 2548 

D1 395 393 75 

D2 35 33 22 

D3 61 61 18 

D4 70 70 24 

D5 79 79 19 

D6 107 107 28 

D7 9795 9728 329 

D8 34 25 14 

D9 55 53 39 

D10 68 33 21 

D11 71 64 48 

D12 22,740 22,740 521 

D13 21 21 19 

D14 23 23 13 

D15 35 35 27 

D16 87 87 35 

D17 36 36 18 

D18 41 41 21 

D19 55 55 20 

D20 102 102 41 
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espectively. It can be seen that the number of relationship types is

qual to the quantity of relationships when choosing insertion co-

rdinate. In other words, the relationship types can wholly repre-

ent a model’s connection relationships. According to Table 4 , most

atching results of matched pairs are 1.0 and unmatched pairs

re 0. These results suggest that the proposed algorithm can yield

ore accurate results with insertion coordinate. 

On the other hand, relationships outnumber relationship types

hen using flow direction as attribute. According to Eq. (3) , differ-

nt relationships may yield a single identical relationship type, be-

ause flow direction is enumerable within only three possible val-

es: 0 – no direction, 1 – inflow and 2 – outflow. Consequently, the

elationship types cannot accurately represent a model and perfor-

ance sees some decline comparing to that of insertion coordi-

ate. As indicated in Table 3 , similarities are relatively higher be-

ween unmatched pairs, even though we can still use a predefined

hreshold to determine whether they are matching. 

.4.2. Complexity discussion 

Let us be given a 3D model M 3 D = { C 3 D , R 3 D } and a 2D engi-

eering drawing M 2 D = { C 2 D , R 2 D } . Their relationship type sets are

 3 D and S 2 D respectively. For each model, the complexity of rela-

ionship type extraction is linear to the number of relationships,

.e., O (| R nD |) ( n ∈ {2, 3}). The complexity of matching calculation is

 (min {| S |, | S |}). That is to say, the time costs of extraction and
3 D 2 D 
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matching calculation would both be growing with the increasing

of relationships. 

5.4.3. Robustness discussion 

The proposed algorithm has a great property of being geomet-

ric deformation invariant. Proportion methods and graphics library

would make components’ 2D geometries different from their 3D

shape projections. Nonetheless in our proposed algorithm, all these

unnecessary and extra variances are discarded by using topol-

ogy features. The recall-precision curves in Fig. 17 is a convincing

showcase of the outcome. 

5.5. Performance comparison 

The presented algorithm is more applicable in real engineering

applications comparing to the Min-Edit Distance based algorithm

(see Section 3.4 ). 

In terms of usability, users can choose any suitable attribute

according to their measuring emphasis. In the Min-Edit Distance

based algorithm, insertion coordinate is the only feasible attribute

allowed. Unlike the one-to-one correspondence in coordinates,

other engineering attributes (such as flow direction) have much

narrower value ranges than that of relationships. So it would be

difficult to find the exact correspondences from the many over-

laps. In this case, computing min-edit distance becomes NP-hard

and the algorithm run time goes indefinitely long (sometimes no

results yielded within an acceptable time range). On the contrary,

in this study, other engineering attributes besides coordinate in-

formation can also be exploited as a relationships attribute (see

Table 3 ), endowing it with more scalability and flexibility. 

In terms of performance, the presented algorithm in this paper

has a prominent advantage. We conducted several sets of compari-

son experiments using different attributes to demonstrate their dif-

ferences. For the Min-Edit Distance based algorithm, we randomly

assume it’s matching or not when calculation exceeds a prescribed

time during experiment, which in other word is a 50% precision.

Here we give two results with attributes being flow direction and

coordination respectively. As shown in Fig. 17 (a), the Min-Edit Dis-

tance based algorithm’s recall-precision curve (the red line) is in

the lower-left-hand corner when the attribute is flow direction.

This suggests the algorithm performance faces enormous chal-

lenges. Conversely, as illustrated in Fig. 17 (a) and (b), the recall-

precision curves of this presented algorithm (the blue lines) remain

stable and excellent (the upper-right-hand corner) in both cases,

proving its outstanding performance. 

6. Conclusion, limitation and future work 

In this paper, we propose a novel algorithm to solve the 2D

& 3D matching problem in process plant. This algorithm first

transforms 2D engineering drawings and 3D models into attribute

graphs by making use of CAD documents; secondly, each model’s

feature vector is generated through extracting its relationship

types; lastly, vector similarity is calculated to measure the match-

ing degree between two corresponding CAD models. The proposed

algorithm is simple and embraces a positive property of geomet-

ric deformation invariant. Experiments demonstrate that our pro-

posed algorithm yields realistic results within a proper time cost

and meets engineering application standards. 

The procedure of matching calculation is executed pairwise, so

that the feature vectors are not uniquely defined and perhaps can-

not be used for a fast model retrieval. However, the problem can

be solved by several existing engineering techniques such as dis-

tributed computation and inverted indexing. In the following work,

we are attempting to overcome this problem and then construct an
ntegrative retrieval system, which can retrieve relevant 3D models

nd 2D engineering drawings at the same time. 
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