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A B S T R A C T

Real-world point cloud objects pose great challenges in point cloud classification as
objects acquired by scanning devices from real-world scans are often cluttered with
background, and are partial due to occlusions as well as reconstruction errors. In the
literature, few works tackle the problem of real-world point cloud classification while
existing methods require fully point-level annotated training samples. However, large-
scale dense point-level foreground-background labeling for real-world point clouds is a
labor-intensive and time-consuming job. In this paper, we propose a novel weakly su-
pervised classification framework, named WSC-Net, for real-world point cloud objects.
Leveraging two auxiliary modules, called semi-supervised point-level pseudo labels
generation and noise-robust multi-task loss, the framework can integrate well with exist-
ing supervised point cloud classification network. A relational graph convolutional net-
work on the local and non-local graph (PointRGCN) is first proposed to predict point-
level foreground-background pseudo labels for each object with sparse ground-truth
point-level foreground-background labels in training datasets. Then, a weakly super-
vised classification network, which combines with an auxiliary foreground-background
segmentation branch, is employed to classify real-world point clouds. To cope with
noise-containing point-level foreground-background labels generated above, a noise-
robust multi-task loss is proposed to train the network accurately. Experimental results
show that the performance of the proposed framework which trained with even only 1%
point-level labels is comparable with many popular or state-of-the-art fully supervised
methods. The source code can be found at http://zhiyongsu.github.io.

c© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Point cloud object classification, which is a classical and crit-2

ical problem in computer graphics and computer vision fields,3

aims to identify the categories of different point cloud objects4

[1, 2]. The rapid development of scanning devices have wit-5

nessed the widely application of point clouds in the fields of6

robotics, autonomous vehicles, augmented reality, urban plan-7

ning, industrial manufacturing applications, etc [3, 4, 5]. Many8

∗Corresponding author.
e-mail: su@njust.edu.cn (Zhiyong Su)

works in the literature have made great progress in the synthetic 9

3D point cloud classification task [1, 6, 7, 8, 9, 10]. The over- 10

all accuracy of the state-of-the-art methods on ModelNet40, the 11

most popular synthetic point cloud dataset in point cloud object 12

classification, has reached more than 93% in 2020 [5], and the 13

trend of bringing the accuracy towards perfection is still ongo- 14

ing. 15

However, recent studies show that the classification models 16

trained on synthetic data often do not generalize well to real- 17

world point cloud objects, and vice versa [11, 12]. Synthetic 18

datasets are usually developed with the assumption that objects 19

are complete, clean, and especially free from any background 20
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noise. Unfortunately, real-world point cloud objects, which are1

usually obtained in real-world settings through LiDAR sensors,2

or RGBD scanners, may suffer from background points (sur-3

roundings), noise, and holes. These real-world objects will in-4

troduce some confusing information, which increases the diffi-5

culty of classifying real-world point cloud. Consequently, ap-6

plying existing point cloud classification methods to real-world7

objects may not achieve the same good results as synthetic data.8

Therefore, how to handle background effectively when they ap-9

pear together with objects due to clutter in the real-world scenes10

is still a very challenging task [11].11

Up to now, only a few pieces of works target the real-world12

point cloud classification problem. They attempt to deal with13

this challenging task from the perspectives of transfer learning14

[12], learning transformation invariant representation [13, 14],15

and multi-task learning [11]. Considering the limited amount of16

annotated real-world point cloud data, transfer learning based17

methods attempt to employ extra synthetic data to enrich stan-18

dard feature representations [12]. Since the real-world point19

clouds are not well aligned, several works try to learn trans-20

lation and rotation invariant point cloud features by the at-21

tention mechanism to improve the robustness against trans-22

lation and rotation [13, 14]. However, none of these works23

have considered the problem of background points which is24

the most challenging task of real-world point cloud classifi-25

cation. Multi-task learning based method benefits the real-26

world point cloud classification network through an auxiliary27

fully-supervised segmentation task, which is employed to dis-28

tinguish the foreground and background points [11]. However,29

it requires accurate dense point-level foreground-background30

labels(annotations). Despite recent developments of modern31

annotation toolkits [15, 16], exhaustive labeling is still a quite32

labor intensive and time-consuming job for ever-growing new33

datasets.34

In this paper, we propose a novel weakly supervised classifi-35

cation framework, called WSC-Net, for classifying real-world36

point clouds. The concept of weak supervision in this pa-37

per contains incomplete supervision and inaccurate supervision38

[17]. Specifically, the framework is designed to take advantage39

of and integrate well with existing supervised point cloud clas-40

sification network through introducing two auxiliary modules :41

semi-supervised point-level pseudo labels generation and noise-42

robust multi-task loss. The former aims to generate point-level43

foreground-background pseudo labels for each object in train-44

ing datasets with sparse ground-truth point-level foreground-45

background labels, as illustrated in Fig.1. Undoubtedly, noisy46

labels will be inevitably introduced during this stage. The latter47

strives to fade away their negative effects to train the classifica-48

tion network efficiently and accurately. Compared with exist-49

ing real-world point cloud classification methods, our method50

can yield competitive performance without the need of tedious51

and time-consuming labeling processes for preparing training52

data. Therefore, it is much more practical than existing fully-53

supervised approaches.54

In summary, the main contributions of this paper are as fol-55

lows:56

• A novel weakly supervised framework for real-world point57

Fig. 1. Illustration of the real-world point cloud contaminated by back-

ground points, and the weak supervision concept in this work. Our weakly

supervised approach assists real-world point cloud classification with fewer

foreground-background labeled points.

cloud object classification is proposed. The framework can 58

make full use of existing supervised point cloud classifi- 59

cation network by incorporating semi-supervised pseudo 60

labels generation and noise-robust multi-task loss. 61

• A local and non-local graph based relational graph con- 62

volutional network (PointRGCN) is proposed to generate 63

point-level foreground-background pseudo labels for each 64

object in training datasets in a semi-supervised manner. By 65

applying the PointRGCN, each point can aggregate more 66

discriminative features from multi-type of neighbors, re- 67

sulting in producing more accurate point-level pseudo la- 68

bels. 69

• A noise-robust multi-task loss that combines classification 70

and segmentation losses is proposed to train the classifica- 71

tion network accurately with noisy-containing point-level 72

foreground-background labels. 73

• We demonstrate that our proposed WSC-Net framework 74

produces comparable results with the state-of-the-art fully- 75

supervised approaches with even only 1% point-level la- 76

bels. 77

The remaining of this paper is organized as follows: In Sec- 78

tion 2, we compare the difference between synthetic and real- 79

world point cloud classification work and then discuss the work 80

related to weakly supervised learning on point cloud and noisy 81

label learning. Section 3 gives an overview of the proposed 82

weakly supervised real-world point cloud classification frame- 83

work. Problem Formulation is discussed in Section 4. We in- 84

troduce the proposed PointRGCN and noise-robust multi-task 85

loss in detail in Section 5 and 6, respectively. After that, we 86

present the experimental results of the proposed weakly super- 87

vised real-world point cloud classification method in Section 88

7. Finally, conclusions and suggestions for future research are 89

provided in Section 8. 90



Preprint Submitted for review / Computers & Graphics (2021) 3

2. Related Work1

2.1. Synthetic Point Cloud Classification2

Early attempts at point cloud classification generally focused3

on the ideal synthetic point cloud data. Overall, synthetic point4

cloud classification methods can be subdivided into projection-5

based methods, voxel-based methods, graph-based methods,6

and point-convolution-based methods. Projection-based meth-7

ods need to project the original point cloud into 2D images and8

use 2D CNNs to process them [18, 19, 20]. These methods9

are also called multi-view based methods. Since multi-view10

based methods need to render batches of 2D images, it will11

lose the intrinsic geometric features of the point cloud. Voxel-12

based methods usually voxelize point clouds into 3D grids, then13

feed them to CNNs [21, 22]. However, the 3D CNNs are14

very computationally expensive, hence the resolution of point15

clouds is highly limited. Alternatively, point-based methods16

can directly handle 3D point clouds. According to the dif-17

ferent ways of point feature learning, these methods can be18

divided into MLPs-based methods, graph-based methods, and19

point convolution based methods. MLPs-based methods repre-20

sented by PointNet [1] and its variants [6, 23, 7] learn 3D point21

cloud feature through multi-layer perceptrons (mlps), capture22

local geometric features by aggregating neighboring informa-23

tion, and use symmetric functions to aggregate the features of24

all points to form a global shape descriptor. Graph-based meth-25

ods [24, 25, 26, 27, 28, 29] consider the points in the point cloud26

as nodes in a graph, and construct links between points as di-27

rected edges. Therefore, the graph neural network defined in28

the spectral domain or the spatial domain is introduced to pro-29

cess point cloud objects. Recently, Point convolution operators30

[8, 10, 30, 9, 31, 32] are proposed to apply convolution opera-31

tions on point clouds directly.32

Nevertheless, the aforementioned point cloud classification33

methods only focus on synthetic point cloud data and do not34

consider real-world point cloud data contaminated by back-35

ground points. Due to the characteristics of real-world point36

clouds, the existing work that tends to be perfect on ideal syn-37

thetic point cloud data cannot work well on real-world data.38

2.2. Real-world Point Cloud Classification39

To the best of our knowledge, currently, there are only a40

handful of works that consider the classification of real-world41

object point cloud. Uy et al. [11] propose the background-42

aware (BGA) model to handle the occurrence of background43

points in point clouds obtained from real scans, but this method44

requires dense point-level foreground-background labels. A45

method that joints supervised and self-supervised learning is46

proposed in [12]. It enriches the point cloud features by47

jointly learning a supervised main classification task and a self-48

supervised 3D puzzle which is to reassemble the split point49

cloud. Since it does not directly address the impact of back-50

ground points on real-world point cloud classification tasks, the51

performance is still unsatisfying. Zhao et al. [14] propose com-52

bining local geometry with global topology toward achieving53

rotation-invariant representations for the real-world point cloud.54

Fuchs et al. [13] present an attention-based neural architecture55

that is robust of rotations and translations of the point cloud. It 56

updates the point features using SE(3)-Transformer, an equiv- 57

ariant attention mechanism. These two works have shown great 58

potential in improving the robustness to the geometric transfor- 59

mation, but none of them tries to handle point clouds contami- 60

nated by the background. 61

In short, existing real-world point cloud data classification 62

methods either require complete foreground-background anno- 63

tation point clouds as training data, or ignore the interference 64

caused by background points to point cloud classification. Our 65

method attempts to combine weakly supervised learning with 66

real-world point cloud classification tasks. We try to handle 67

real point clouds contaminated by background points by taking 68

sparse point-level annotations as supervision. 69

2.3. Weakly Supervised Learning on Point Cloud 70

In this paper, we focus on point cloud feature learning with 71

less supervision. Therefore, we will separately discuss unsu- 72

pervised, self-supervised, and weakly supervised learning on 73

the point cloud. Unsupervised work does not require labeled 74

data, but most of them focus on low-level visual tasks, such 75

as point clustering, distinctive region detection, etc. Li et al. 76

[33] presents an approach to learn and detect distinctive re- 77

gions on 3D shapes in an unsupervised manner. Self-supervised 78

work mainly focuses on point-wise feature learning and cannot 79

be directly used for downstream point cloud classification and 80

segmentation tasks. MortonNet [34] learns point-wise features 81

by leveraging space-filling curves in a self-supervised manner. 82

Sauder et al. [35] propose a self-supervised learning task to 83

learn point cloud representations by training a model that re- 84

assembles randomly split point clouds. Recently, several works 85

have tried to utilize less supervision to achieve point cloud se- 86

mantic segmentation. A weakly supervised point cloud seg- 87

mentation method is proposed in [36] by introducing additional 88

losses to regularize the model. However, it adds a smooth 89

branch to the original segmentation network, which will reduce 90

the efficiency of the inference stage. Wei et al. [37] propose a 91

weakly supervised point cloud segmentation method that only 92

uses scene-level weak labels and subcloud weak labels. Yet this 93

work only focuses on large scenes with many different types 94

of objects, it dose not extend to point cloud part segmentation 95

tasks. 96

It is hard to directly apply these methods to process the real- 97

world point cloud. Meanwhile, these methods are difficult to 98

directly and efficiently integrate into the existing point cloud 99

classification approaches. We propose a weakly supervised 100

point cloud segmentation method based on the semi-supervised 101

pseudo labels generation and noisy label learning to assist the 102

real point cloud classification network. 103

2.4. Robust Learning with Noisy Labels 104

In practical applications, it is unrealistic to always obtain 105

completely clean labeled data. To this end, many approaches 106

have been proposed to learn with noisy labels, such as correct- 107

ing noise labels, using adaptive training strategies, modifying 108

loss functions, using noise-robust loss function, etc. There are 109
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Fig. 2. The proposed weakly supervised real-world point cloud classification framework.

several attempts using conditional random field [38], neural net-1

work [39], knowledge graph [40], and other methods to correct2

the wrong labels. However, those approaches require additional3

clean label data. Another scenario is to design adaptive training4

strategies that are more robust to the noisy labels [41, 42, 43].5

Some approaches enhance the robustness of the model to noisy6

labels by modifying the loss function. Han et al. [44] estimate a7

noise transformation matrix that defines the probability of mis-8

labeled classes with others classes [45]. It has been proved that9

the Mean Absolute Error (MAE) is robust to noisy labels, but10

the commonly used Cross Entropy (CE) loss is not [46]. How-11

ever, the robustness of MAE will increase the difficulty of train-12

ing. The Generalized Cross Entropy (GCE) loss proposed in13

[47] can be seen as a generalization of MAE and CE. Wang14

et al. [48] propose the Symmetric Cross Entropy (SCE) which15

combines a Reverse Cross Entropy (RCE) with the CE loss, and16

it strikes a balance between sufficient learning and robustness to17

noisy labels.18

For learning from noisy pseudo labels, we propose a smooth19

constraint to filter suspicious pseudo labels. Then we adopt20

point cloud segmentation loss to a noise-robust loss. Lastly, we21

utilize classification loss and noise-robust segmentation loss to22

construct a noise-robust multi-task loss. Thus, we take advan-23

tages of both noise-robust learning and real-world point cloud24

geometric characters.25

3. Overview of the framework 26

The proposed WSC-Net framework for real-world point 27

cloud classification consists of two stages, as illustrated in 28

Fig.2. In the first stage, to produce extra supervision from 29

limited labeled points, we propose a novel semi-supervised 30

PointRGCN to generate pseudo foreground-background labels 31

for each incompletely labeled real-world point cloud object. 32

A k-NN voting based smoothness constraint module is intro- 33

duced to refine the pseudo labels, since the generated pseudo 34

labels contain some misclassifications. In the second stage, 35

a weakly supervised real-world point cloud classification net- 36

work is employed to classify real-world point cloud. To ac- 37

curately train the final classification model, a novel multi-task 38

combined noise-robust loss constrained on shape-level labels, 39

point-level sparse labels, and noisy pseudo labels is introduced. 40

The filtered points are only used for feature extraction, and the 41

loss of these points is ignored. 42

4. Problem Formulation 43

We consider a point cloud dataset with B samples and K 44

classes as {Xb}b=1,2,3,...,B. Each sample Xb ∈ R
N×F con- 45

sists of N 3D points with its xyz coordinates and other ad- 46

ditional attributes, e.g., surface normal, RGB values. Each 47

sample Xb is accompanied with a shape-level class label Vb ∈ 48

{1, . . . K} which is easy to obtain, and it is further accompa- 49

nied with ground-truth point-level foreground-background la- 50
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Input real-world 
point cloud with 
incomplete point-
level foreground-
background labels.

Output real-world 
point cloud with 
generated pseudo 
labels.

N×3 N×D1 N×C N×C

Foreground-labelled Points Background-labelled Points

Unlabeled Points

Fig. 3. An illustration of the proposed PointRGCN for point-level pseudo

labels generation with a per-point loss function.

bel yb ∈ {0, 1}S , where 0 and 1 represent the background and1

foreground point respectively, S is the number of points with2

ground-truth point-level labels, in this paper, S ≪ N. We de-3

note the one-hot encoded shape-level label and point-level la-4

bels as V̂b and ŷb, respectively. To get an incompletely labeled5

real-world point cloud dataset, we assume that only S points of6

each training sample are labeled. Therefore, we define a binary7

mask M ∈ {0, 1}B×N . For each point xi in sample Xb, mbi = 08

means that xi is unlabeled, otherwise it has a ground-truth la-9

bel. A semi-supervised relational graph convolutional neural10

network h(X; Θ1), parameterized by Θ1, is designed to gener-11

ate pseudo labels for each sample Xb. A point cloud encoder12

network f (X; Θ2), e.g., DGCNN [7], PointNet++ [6], parame-13

terized by Θ2, is employed to obtain the embedded point cloud14

features Ze ∈ R
N×H .15

5. Point-level Pseudo Labels Generation16

In this section, to produce extra supervision for the classifica-17

tion model training, we firstly propose a PointRGCN to gener-18

ate point-level foreground-background pseudo labels for the in-19

completely labeled real-world point cloud, as shown in Fig. 3.20

The proposed PointRGCN consists of two parts: the local and21

non-local relational graph construction and a semi-supervised22

relational graph convolutional network (R-GCN). A smooth-23

ness constraint module is introduced to filter suspicious pseudo24

labeled points.25

5.1. The Local and Non-Local Relational Graph Construction26

To extract more discriminative point cloud features, we con-27

struct a local and non-local relational graph to aggregate local28

and non-local information of each point, as shown in Fig. 4.29

Currently, the common methods used to construct the graph30

for point cloud, such as searching the k-nearest neighbors in31

Euclidean space [1, 7] (k-NN graph) or searching neighbors32

in a fixed metric radius sphere [6, 24] (radius graph), can33

only aggregate point features in a local way. As a result,34

Fig. 4. An illustration of the local and non-local relational graph, different

colored lines indicate different types of neighborhoods.

the extracted features of points on the local graph tend to be 35

smoothed. Therefore, to avoid over-smoothing features and 36

generate pseudo labels with higher quality, for each point, we 37

choose to not only aggregate its k-nearest neighbors in Eu- 38

clidean space, but also aggregate the points which have simi- 39

lar local geometric features but located distantly in Euclidean 40

space [2]. 41

Firstly, we use the k-NN algorithm to get the k1-nearest 42

neighbors of each point xi in Euclidean space, written asN local
i

. 43

Then, following [2], we get the k2 non-local neighbors of each 44

point xi in eigenvalues space, written as Nnon−local
i

. The k1- 45

nearest neighbors of point xi is {xi1, xi2, ..., xik1
, xik1

∈ N local
i
}. 46

Let U = {xi1 − xi, xi2 − xi, ...xik1
− xi}, then define C = UT × U. 47

We have the decomposition C = RΛRT , where R is the rotation 48

matrix, and Λ is a diagonal and positive definite matrix, known 49

as eigenvectors and eigenvalues matrixes respectively [2]. Get 50

the eigenvalues of each point xi which can be represented as 51

λi ∈ R
3, and ordered as λ1

i
≥ λ2

i
≥ λ3

i
, to form the eigenvalues 52

space. We use L2 distance to calculate the distance in eigen- 53

values space between different points. Then, we choose the k2 54

nearest neighbors for each point xi according to: 55

Distance(xi, x j) = ||λi − λ j||. (1)

Finally, by properly arranging these two types of neighbors, 56

each point can capture richer local and non-local information. 57

We unite the local neighbors N local
i

(1 ≤ i ≤ N) and non-local 58

neighbors Nnon−local
i

(1 ≤ i ≤ N) to form the local and non-local 59

relational graph, represented as N r
i
(1 ≤ i ≤ N, r ∈ {local, non − 60

local}) . 61

We define the adjacency matrix of the local and non-local

relational graph as:

A =

























c00 . . . c0N

...

cN0 . . . cNN

























, (2)

where ci j indicates whether there is a relation between xi and x j.

ci j = 1 if x j is the neighbor of xi, otherwise ci j = 0. According

to the different types of neighborhood relations between xi and

x j, we can build the edge type matrix E as:

E =

























e00 . . . e0N

...

eN0 . . . eNN

























, (3)
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Algorithm 1: PointRGCN, Point-level Pseudo Labels Genera-

tion

Input: Point Cloud {Xb ∈ R
N×F}, Labels {yb ∈ Z

S }

Output: Pseudo Labels Predictions {y
p

b
∈ ZN}

/* The Local and Non-local Relational Graph

Construction: */

Search k1-nearest neighbors in Euclidean space to get local

neighbors;

Search k2-nearest neighbors in eigenvalue space to get non-local

neighbors;

Construct the local and non-local relational graph according to

Eq. (2) and Eq. (3);

/* Smei-Supervised R-GCN */

for Epoch← 1 to Epochs do
Train the R-GCN one epoch: Θ1 = Θ1 − α∇Lsemi|{Xb},{yb}

;

end

/* Obtain Predictions: */

Forward pass Zh = h(Xb; Θ1)

Obtain pseudo labels predictions y
p

b
via argmaxi zhi ;

where ei j denotes the relational type of xi and x j. We have1

ei j ∈ E, and the types of all relations in the local and non-local2

relational graph form the relation types set E = {local, non −3

local}.4

5.2. Semi-supervised Relational Graph Convolutional Net-5

works6

In order to extract richer information from multiple rela-

tion types of neighbors for each point, we introduce a rela-

tional graph convolutional network (R-GCN) [49] to gener-

ate pseudo foreground-background labels in a semi-supervised

manner. R-GCN uses multiple groups of weights to learn fea-

ture transformations between different relation types. The pro-

posed PointRGCN consists of two R-GCN layers (defined in

Eq.(4)), and the output of the previous layer is the input to the

next layer [49]. In the first layer, it takes the local and non-local

relational graph as input, then extracts high-level point features

Z1
h
∈ R

N×D. For the second layer, the embedded features Z1
h
,

after passing a ReLU activation, is mapped to prediction scores

Zh ∈ R
N×2. The forward propagation formula of the R-GCN

layer can be written as:

Z
(l+1)

hi
= σ



















∑

r∈E

∑

j∈N r
i

1

ci,r

W (l)
r Z

(l)

h j
+ W

(l)

0
Z

(l)

hi



















, (4)

where Z
(l)

hi
is the hidden state of point xi in the l-th layer, j ∈ N r

i
7

denotes the set of neighbors of point xi under the relation type8

r, ci,r is a problem-specific normalization constant which is set9

to |N r
i
| in this paper, and W is a learnable weight matrix.10

The optimize objective Eq.(5) is penalized only on those

ground-truth labeled points, while ignoring unlabeled points.

We minimize the per-point softmax cross-entropy loss only on

labeled points:

Lsemi = −
∑

i

mbi

∑

k

ŷbik log
exp (zhik)
∑

k exp (zhik)
, (5)

Algorithm 2: Smoothness Constraint

Input: Point Cloud {Xb ∈ R
N×F}, Pseudo Labels {y

p

b
∈ ZN}

Output: Refinement Mask {Qb ∈ R
N};

for xi : Xb do

/* Obtain Majority Predictions */

Search k-nearest-neighbors in euclidean space for xi;

Find the most frequent label in the collection of xi’s k-NN

neighbors’ pseudo labels yNi
, written as ybi′ (majority

prediction).

/* Construct Refinement Mask Based on Majority

Prediction */

if ybi′ = y
p

bi
then

qbi = True;

else
qbi = False;

end

end

where mbi indicates whether point xi is labeled or not, which 11

means the semi-supervised R-GCN is constrained with only 12

a few labeled points ŷb ∈ {0, 1}{S×2}, zh is the logits on fore- 13

ground and background. Through multiple epochs of training, 14

each point can obtain more discriminative fine-grained features 15

from the local and non-local relational graph, and the unlabeled 16

points can get the predicted pseudo labels. 17

The proposed pseudo labels generation algorithm is shown in 18

Algo.1. 19

5.3. Smoothness Constraint 20

A k-NN voting based smoothness constraint module is in- 21

troduced to filter out the suspicious pseudo labels, and further 22

refine the generated pseudo labels. Although the PointRGCN 23

can generate high-quality predicted labels for the majority of 24

unlabeled points, the prediction is not perfect. To alleviate the 25

negative impact of wrong labeled points, we introduce a k-NN 26

voting based method to filter out suspicious points. We count 27

the number of different types of labels in the 1-hop k-NN neigh- 28

borhood of each point xi. If the pseudo label of xi is incon- 29

sistent with the mode of its k-NN neighbors’ pseudo labels, it 30

is considered as an invalid labeled point. A binary refinement 31

mask q ∈ {0, 1}B×N can be obtained through the k-NN voting 32

mechanism to indicate whether a point is valid or not. For each 33

point xi, it is invalid if qbi = 0, otherwise it’s valid. The k-NN 34

voting based smoothness constraint algorithm is summarized in 35

Algo.2. 36

6. Weakly Supervised Real-world Point Cloud Classifica- 37

tion Network 38

In this section, we firstly present a weakly supervised real- 39

world point cloud classification network architecture which is 40

employed to classify real-world point cloud, with the assistance 41

of an auxiliary weakly supervised segmentation task. Then, we 42

present the noise-robust multi-task loss to train the classification 43

model accurately on noisy pseudo labels. 44
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Fig. 5. Weakly Supervised Real-world Point Cloud Classification Network.

6.1. Network Architecture1

The weakly supervised real-world point cloud classification2

network architecture, as depicted in Fig. 5, consists of a classi-3

fication branch that trained on shape-level labels and a weakly4

supervised foreground-background segmentation branch that5

trained on few point-level ground-truth labels and generated6

pseudo labels, inspired by the fully supervised background-7

aware(BAG) classification network [11].8

We choose DGCNN [7] as the backbone network to extract9

point cloud features, due to its impressive performance in both10

point cloud classification tasks and segmentation tasks. In the11

classification branch, point cloud features Ze are aggregated12

into a 1-D global feature, i.e. Zg = maxi zei, to produce object13

classification scores z̄b ∈ R
K through several fully connected14

layers. As well as the segmentation branch, the expanded global15

feature Zg′ ∈ R
N×Hg and point-level features Ze are concatenated16

as Ze′ to obtain point-level segmentation scores Zb ∈ R
N×C .17

The classification branch is constrained on the shape-level18

labels, and the segmentation branch is constrained on a small19

number of ground-truth labels and generated pseudo labels. We20

train both classification and foreground-background segmenta-21

tion branches jointly with noisy label learning.22

6.2. Noise-robust Multi-task Loss23

To accurately train the weakly supervised real-world point

cloud classification network, we propose a noise-robust multi-

task loss that combines both classification loss and noise-robust

segmentation loss. The combined classification-segmentation

loss is:

Ltotal = Lcls + λLseg, (6)

where λ is used to balance the classification task and segmenta-24

tion task.25

For the classification branch, we firstly use a channel-wise

symmetric aggregation operation on the embedded feature, i.e.

zb = maxi(zbi). Then we use several fully connected layers

to obtain z̃b, the logits on each object category. We apply a

softmax Cross Entropy (CE) loss for the classification branch.

Consequently, the classification loss can be defined as:

Lcls = −
∑

k

V̂bk log
exp (z̄bk)
∑

k exp (z̄bk)
, (7)

where V̂b is the one-hot encoded shape-level label.26

For the segmentation branch, since the refined pseudo labels

still contain a small amount of misclassification, we propose a

segmentation loss Lseg which is tolerant to noisy pseudo labels.

The proposed loss Lseg contains two terms: the segmentation

loss on the weak labels, and the segmentation loss on the pseudo

labels. Hence the segmentation loss Lseg can be written as:

Lseg = Lweak +Lpseudo. (8)

Lweak that penalizes weak labels can be specifically written as:

Lweak = −
∑

i

mbi

∑

k

ŷbik log
exp (zbik)
∑

k exp (zbik)
, (9)

where zb is the point-level logits on each segmentation category, 27

mbi indicates whether point xi has a ground-truth label, and ŷb 28

is the one-hot encoded point-level labels. 29

Due to the corruption of pseudo labels, it’s difficult to train an

accurate real-world point cloud segmentation branch only with

pseudo labels. Meanwhile, an inaccurate segmentation branch

will not help the real-world point cloud classification, and

will even degrade the classification performance. It has been

demonstrated that the CE loss commonly used in point cloud

segmentation task is not robust against noisy labels [46, 45].

Therefore, we introduce a noise-robust Symmetric Cross En-

tropy (SCE) [48] loss function to accurately train the segmen-

tation branch with pseudo labels. The SCE loss consists of a

Reverse Cross Entropy (RCE) term which is noise tolerant un-

der symmetric or uniform label noise if noise rate η < 1 − 1
K

and a CE term which is not, but useful for achieving good con-

vergence. The SCE is formally written as:

Lpseudo = Lce +Lrec

= −
∑

i

(¬mbi) ∧ (qbi)

{αp

∑

k

ŷ
p

bik
log

exp (zbik)
∑

k exp (zbik)
+

βp

∑

k

zbik log
exp (ŷ

p

bik
)

∑

k exp (ŷ
p

bik
)
} (10)

where ¬ means logical negation, ∧ means logical and. qbi 30

means whether point xi is valid, that is to say, Lpseudo only pe- 31

nalizes the valid pseudo labeled points. ŷ
p

b
is the one-hot en- 32

coded pseudo labels. αp and βp are hyperparameters, with αp 33
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Algorithm 3: Weakly Supervised Real-world Point Cloud Clas-

sification via Pseudo Labels Generation and Noise-robust Multi-

task Loss

Input: Training Dataset:

Point Cloud in Training Set{Xb ∈ R
N×F} ;

A Few Point-level Labels{yb ∈ Z
S }

Testing Dataset:

Point Cloud in Testing Set{X̃b ∈ R
N×F}

Output: Category Predictions{Ṽb ∈ Z}

/* Training Stage: */

Generate point-level pseudo labels {y
p

b
∈ ZN} according to Algo.

1;

Calculate refinement mask {Q ∈ RN} according to Algo. 2;

for Epoch← 1 to 150 do
Train one epoch: Θ2 = Θ2 − α∇Ltotal|{Xb},{yb},{ỹb},{Q};

end

/* Inference Stage: */

Forward pass Zp = h(X̃b);

Obtain final prediction of via Ṽb = arg maxk zpk;

on the overtting issue of CE while βp for exible exploration on1

the robustness of RCE [48].2

The proper weights betweenLweakly andLpseudo are very crit-

ical for the final performance. Considering the number of weak

labels is much less than that of pseudo labels, if we use the

Eq.(8) directly, the segmentation branch will tend to fit noisy

pseudo labels instead of the ground truth weak labels [50]. For

the above reasons, the regularization is applied to re-weights

the losses calculated on different labels to correct the impact of

pseudo labels. The weighted segmentation loss function is:

Lseg = αLweakly + βLpseudo, (11)

where α and β are parameters to balance the two terms. Then,3

the final segmentation loss Lseg is the weighted sum of the two4

terms. Since how to balance these two loss functions plays an5

important role on the final performance of the model [50], we6

assume β << α in this paper.7

Finally, the classification loss and the noise-robust segmen-

tation loss are combined as the noise-robust multi-task loss:

Ltotal = Lcls + λ(αLweakly + βLpseudo). (12)

7. Experiment8

In this section, we firstly evaluate our proposed WSC-Net on9

the ScanobjectNN [11] dataset. Then, we conduct detailed ex-10

periments to evaluate the importance of different modules and11

the compatibility with alternative backbone. We also visualize12

experimental results to analyze the effect of weakly supervised13

segmentation branch on the real-world point cloud classifica-14

tion network.15

7.1. Implementation Details16

In the point-level pseudo labels generation stage, we train the17

R-GCN for 64 epochs and the output in the final epoch is the18

predictions of pseudo foreground-background labels. To pre-19

vent over-fitting, the early stop strategy is adopted. That is to20

(a) Objects only. (b) Objects with background.

Fig. 6. Example objects from ScanobjectNN [11].

say, when the accuracy on the labeled points reaches 99% over 21

3 times, the training is stopped. Adam optimizer is used for effi- 22

cient training. The initial learning rate is 0.0135, and we reduce 23

the learning rate until 0.0001 using cosine annealing. 24

The final training objective is the noise-robust multi-task loss 25

function (Eq.(12)). We use an Adam optimizer, and the initial 26

learning rate is 0.1. The exponential decay is applied to the 27

learning rate. The batchsize is set at 32. We train the network 28

for 150 epochs. 29

The number k1 and k2 of nearest neighbors in the local and 30

non-local relational graph is set to 20, respectively. In the 31

pseudo label refining step, we set the number k of nearest neigh- 32

bors to 50 for the k-NN voting. The number k of nearest neigh- 33

bors in DGCNN is 20. 34

Our proposed weakly supervised real-world point cloud clas- 35

sification approach is summarized in Algo. 3. 36

7.2. Dataset 37

To the best of our konwledge, ScanobjectNN is the first and 38

only real-world point cloud object dataset based on scanned in- 39

door scene data with foreground-background annotations in the 40

literature [11]. ScanObjectNN consists of two types of data, 41

namely the object point cloud with background, and the object 42

point cloud only, as shown in Figure 6. It is created from the 43

state-of-the-art scene mesh datasets SceneNN and ScanNet in 44

the way of automatically instance segmenting and manually fil- 45

tering. And, it contains 15 common daily objects categories, 46

such as tables, chairs, bookshelves, sinks, toilets, displays, etc. 47

Among the several variants of ScanObjectNN, we choose the 48

most challenging one, the ScanObjectNN-PB T50 RS, to eval- 49

uate our method. Each sample in this dataset randomly shifts 50

the bounding box up to 50% of its size from the box centroid 51

along each world axis. Meanwhile, rotation and scaling are ap- 52

plied to them [11]. ScanObjectNN-PB T50 RS contains 13698 53

real-world point cloud objects from 15 categories. 11,416 ob- 54

jects are used for training and 2,282 objects are used for test- 55

ing. Each point cloud object has 2048 points, and their coordi- 56

nates are not normalized. Each point in the point cloud has a 57

point-level label to indicate the foreground or background. We 58

assume that only S points are labeled within each real-world 59

point cloud sample. Specifically, in the following experiments, 60

we uniformly sample 1% points for each training sample as su- 61

pervision. 62

7.3. Evaluation Metrics 63

For pseudo labels generation experiments, we calculate the 64

segmentation accuracy for each sample and report the average 65

segmentation accuracy over all instances (InsAvg) and all cat- 66

egories (CatAvg). The average refined segmentation accuracy 67
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Table 1. The class-specific results of pseudo labels generated by PointRGCN with different levels of supervision.

Index Model Re-InsAvg InsAvg CatAvg bag bin box cabinet chair desk display door shelf table bed pillow sink sofa toilet

Acc

GCN 1% 82.78 82.18 82.28 84.61 82.66 80.82 81.68 84.14 75.39 85.28 84.42 77.41 83.25 81.36 81.94 82.13 82.35 86.79

PointRGCN 1% 84.86 82.49 82.57 85.08 82.32 81.24 82.94 84.35 75.91 85.40 85.61 76.66 84.07 81.60 82.51 81.98 82.31 86.53

GCN 10% 87.70 85.69 85.81 88.25 86.43 84.88 85.30 87.63 79.35 88.49 87.31 80.80 86.48 84.91 85.71 85.43 86.19 90.05

PointRGCN 10% 94.44 92.20 92.42 94.12 92.76 92.75 92.63 93.59 88.20 94.18 93.84 86.38 92.37 92.09 93.38 92.82 92.35 94.81

mIoU

GCN 1% - 61.81 62.43 66.97 64.11 61.51 61.33 65.24 52.58 65.80 61.16 52.56 59.61 62.64 64.91 63.54 63.60 70.91

PointRGCN 1% - 64.46 64.93 69.22 65.07 63.96 65.35 67.29 56.66 67.65 65.83 54.95 63.92 64.54 67.19 64.95 65.26 72.11

GCN 10% - 69.88 70.51 75.68 72.58 70.10 69.73 73.24 60.65 73.31 68.77 60.28 67.56 70.64 72.86 71.09 72.20 78.94

PointRGCN 10% - 83.13 83.79 87.32 84.72 85.27 84.02 85.33 77.62 86.24 83.96 72.17 81.34 84.33 87.05 85.00 84.09 88.38

over all instances is also reported as ’Re-InsAvg’. At the same1

time, the mean Intersect over Union (mIoU) for each sample is2

calculated, and the average mIoU over all instances (InsAvg)3

and all categories (CatAvg) are also reported.4

For real-world point cloud classification experiments, overall5

accuracy (oAcc) and mean class accuracy (mAcc) are used as6

performance criteria. ’oAcc’ represents the mean accuracy for7

all test instances and ’mAcc’ represents the mean accuracy for8

all shape classes [51]. Meanwhile, ’SegAcc’, the average seg-9

mentation accuracy over all samples is also used to evaluate the10

segmentation branch performance.11

7.4. Pseudo Labels Generation Results12

We use the proposed PointRGCN to generate pseudo labeled13

data for the incompletely labeled ScanObjectN-PB T50 RS14

training set. In Table 1, we report the performance of GCN and15

the proposed PointRGCN. Our proposed method can correctly16

classify 92.2% of the total points with only 10% of the labeled17

points. Under the setting of scarce labeling, our method can still18

correctly classify about 81.4% of the total points even with only19

1% of the labeled points. Meanwhile, the PointRGCN exceeds20

the baseline GCN employed on the k-NN graph at different la-21

beling levels. Moreover, by the smoothness constraint module,22

the misclassification can be eliminated, and only the ”possibly23

correct” points can be retained, which further improves the ac-24

curacy.25

7.5. Real-world Point Cloud Classification Results26

The results of our classification framework on the27

ScanObjectNN-PB T50 RS dataset are shown in Table 2. The28

baseline method indicates that only a few ground-truth point-29

level labels are used as supervision. By comparing the results of30

different models, we can draw the following conclusions. First31

of all, our proposed method based on pseudo labels generation32

and noisy label learning improve the oAcc by 0.7% compared33

with the baseline. Secondly, our weakly supervised real-world34

point cloud classification network(Ours) is comparable to the35

fully-supervised methods [11] even with only 1% point-level36

labels. The gap between the above two methods is only 0.3%.37

Finally, our method outperforms 1.5% improvement on overall38

accuracy compared with the DGCNN without a segmentation-39

guided branch.40

7.6. Ablation Analysis41

We further conduct detailed experiments to evaluate the im-42

portance of the proposed components, and examine the compat-43

ibility of the proposed WSC-Net with different backbone net-44

works.45

Table 2. Classification results on ScanObjectNN-PB T50 RS.

Setting Model oAcc mAcc

Only Shape-level Labels

3DmFV [52] 63.0 58.1

PointNet [1] 68.2 63.4

SpiderCNN [31] 73.7 69.8

PointNet++ [6] 77.9 75.4

DGCNN [7] 78.1 73.6

PointCNN [8] 78.5 75.1

Fully Supervised
BGA−PN++ [11] 80.2 77.5

BGA−DGCNN [11] 79.9 75.7

Weakly Supervised

Ours(1%baseline) 79.0 75.0

Ours(1%) 79.7 75.9

Ours(10%baseline) 79.9 76.6

Ours10% 79.9 76.6

Table 3. Importance of different modules.

PS SC REG NRL oAcc mAcc SegAcc

79.0 75.0 78.0

x 79.0 75.3 75.9

x x 79.4 75.8 75.7

x x x 79.3 76.3 78.0

x x x x 79.7 75.9 78.3

7.6.1. The importance of each component 46

In order to evaluate the importance of each component, we 47

evaluate the performance of the combination of different com- 48

ponents, and the results are summarized in Table 3. ”PS” de- 49

notes we use the generated pseudo labels as additional super- 50

vision for the segmentation branch. ”SC” denotes smooth- 51

ness constraint module is employed to refine the pseudo labels. 52

”REG” denotes we assign weights toLweak andLpseudo. ”NRL” 53

denotes we introduce noise-robust loss to Lpseudo. 54

As pseudo labels contain some misclassifications, it’s harder 55

to train an accurate model through corrupted labels. Therefore, 56

We observe that summingLweak andLpseudo indiscriminately to 57

train the segmentation branch will not improve the classification 58

model. Explicitly refining pseudo labels by using the smooth- 59

ness constraint module leads to about 0.4% improvement for 60

overall accuracy. By re-weighting Lweak and Lpseudo, there is 61

about 0.3% improvement compared with the baseline. Com- 62

bining the above two strategies and applying noise-robust loss 63

on pseudo label loss further improve the overall accuracy by 64

0.4%. 65

7.6.2. Compatibility 66

We further evaluate the compatibility with alternative back- 67

bone networks of our framework. Specifically, we conduct a 68

compatibility experiment on PointNet++. As shown in Table 69

4, our method can achieve similar results under different net- 70

works. At the same time, we observe that the proposed method 71
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Table 4. Compatibility with alternative backbone network.

Model SegAcc oAcc mAcc

PointNet++ [6] 47.37 79.17 77.02

BAG PointNet++ [11] - 80.20 77.50

WS PointNet++ 1% baseline 76.01 79.48 77.67

WS PointNet++ 1% 78.45 80.07 77.14

WS PointNet++ 10% baseline 77.29 80.24 77.88

WS PointNet++ 10% 78.56 80.14 76.97
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Fig. 7. 1% labeled point cloud pseudo labels generation resutls.

has a significant improvement in segmentation accuracy com-1

pared with the baseline. However, under the 10% labeled set-2

ting, the network focuses too much on the segmentation task,3

and the performance on the classification task drops.4

7.7. Visualization5

We show some qualitative results of real-world point cloud6

object foreground-background predictions in both the pseudo7

labels generation on training set and the final output segmen-8

tation results on test set. For each segmentation result, back-9

ground and foreground are labeled in gray and blue, respec-10

tively.11

Firstly, we present the pseudo labels generation results on12

scanobjectNN training set samples in Fig. 7. For each sample,13

the top row is the ground-truth label, and the bottom row is the14

pseudo labels generated with only 1% point-level labels. It can15

be observed that our proposed R-GCN based method can gen-16

erate very accurate pseudo labels with a small amount of point-17

level labels. Nonetheless, we also observe that our method mis-18

classifies some outliers.19

Then, we visualize the foreground-background segmentation20

results of the auxiliary segmentation branch. For each sam-21

ple, the top row is the ground-truth annotations, and the bot-22

tom row is the foreground-background predictions of our model23

trained with 1% ground-truth labels. Fig.8 and Fig.9 are the24

foreground-background segmentation results of correctly clas-25

sified samples, and the foreground and background segmenta-26

tion results of incorrectly classified samples,respectively. It can27

be observed that, for correctly classified samples, its segmenta-28

tion results are relatively accurate. While for incorrectly classi-29

fied samples, its segmentation results are relatively bad.30

8. Conclusion31

In this paper, we propose a weakly supervised classi-32

fication framework, which requires only sparse point-level33
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Fig. 8. Correctly classified samples segmentation results.
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Fig. 9. Incorrectly classified samples segmentation results.

foreground-background annotations, for classifying real-world 34

point cloud objects. The proposed pseudo labels generation 35

method PointRGCN can significantly reduce the labor and time 36

costs of annotating 3D real-world datasets. Besides, the intro- 37

duced noise-robust multi-task loss can improve the robustness 38

against noisy foreground-background labels. Experiments on 39

the ScanobjectNN dataset show that our framework is com- 40

parable with many popular or state-of-the-art fully-supervised 41

methods with even only 1% point-level labels. 42
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